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ON POINCARE'S TRANSLATION OPERATOR
FOR ORDINARY EQUATIONS WITH RETARDS

G. DYLAWERSKI, 1. JODEL

The aim of this paper is to generalize Poincare’s translation operator along trajectories
of ordinary differential equations. We will consider this operator as some multi-valued map.
By using the topological degree methods to this operator we are able to prove some results
concermming the existence of periodic solutions for ordinary differential equations with retards.

The above results stand some generalization of well known Poincare-Krasnosielski re-
sults concerning periodic solutions for ordinary differential equations which right side satis-
fies the Lipschitz condition with respect to the second variable (cf. [1]). We consider this
paper as some extension and continuation of methods presented in (2]

We will use the following notations. lLet X be a topological space and

A~ X. Then 0A denotes the boundary of A in X and A denotes the closure

of Ain X. C({a, b), R") is the space of all continuous functions from [a, b]

into R” with the norm | x (= supbux(t);!. By /x or shortly by / we will de-
t¢|a,b]

note the identity map over X. By K,, B, we will denote, respectively, the

closed ball in C([a, b], R")and R" with the center in the point zero and ra-

dius r.

Multi-valued maps we will denote by ¢, ®, vy, H,single-valued by e, S
PV, W f x yr

A multi-valued map ¢: X »Y is called upper semi-continuous u. s. C.
if @(x) is a compact subset of ¥ for each x¢AX and for every open subset
U~ Y the set ¢ (U)={x¢.X, (x)=U} is an open subset of X

An u. s, ¢, multi-valued map ¢: X' -+ is called acyclic if ¢(x) is ana-
cvelic set, for each x¢.X (in the sense of the Cech cohomology theory with
integer coefficients).

Let £ be a Banach space, X be a metric space, K,c £ A multi-valued
map ®: K, ~F is called a pseudoacyclic map if @ is a composition of an
acyclic map ¢: K, —~.X and a continuous function r: XNX—E ie ®=rog

let us consider multi-valued map /- ®: K, FE, where ®=ro¢ is a
compact, pseudoacyclic map and (/- @®)X0K,)c- £~ {0} For such a map is pos-
sible to define the topological degree by putting:

Deg(/—®, K,)=deg(p, p—rogq. K,)

where p: Go—K,, p(x. v)=x, q: Go—E, q(x, y)=y, Go={(x, V)EK,XX,
veg(x)). For the definition of the topological degree see [1; 33 5]. Below, we
will formulate a few properties of the topological degree for pseudoacyclic
maps comp. [1; 3; 5] for proofs.

Proposition 1. /f Deg(l ®, K,)+0, then there exists x¢K, such
that 0¢(/— @) x).

Proposition 2. Let H: K,<[0, 1]+ X be an acyclic map and r:
X -+ F be a continuous map such that the composition roH is a compact
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map. Assume further that 0¢([—ro H)0K, %[0, 1]). Then Deg(/—roH,K,)
=Deg(/—roH,, K,), w-rre Hfx)=H(x, 0) H,(x)=FH(x, 1).

Proposition 3. Let ¢: K,— X be an acyclic and compact map and
R: Xx[0, 1] — E be a continuous map. Suppose that 0¢(/—r,o@)0K,). for
every £€[0. 1] r(x)=R(x. ). Then Deg(/—r,- 9, K,)=Deg(/—r,°9, K,).

Proposition 4. Let ¢: K,— X be an acyclic and compact map and
let r: X — F be a continuous function, where F is a finite dimensional sub-
space of E. Assume further that 0¢ ([ —r-o)0K,). Then Deg(/—r-o¢, K,)
=Deg (/-—ro9", K7), where K"=K,NF, ¢"=@/gn: K} — X.

Proposition 5 Let X be a metric space, E* be a finite dimensional
space and K,—E". Let ¢: K,— X be a continuous map. Assume further that
0¢(/—ro9)0K,) and A: R" — E" is a linear isometry. Then Deg(/—A™"'
cropoA, B,)=Deg (/—roo, K)).

Ordinary differential equations with retards. Let 7, 4,0, i=1,...,m,
h=max k; and x€C ([0, 7], R"), ye¢C([--A, 0], R") be two functions such that

x(O)——-‘y(O). By yx we will denote a function in C([—#4, T), R*) given by the
formula:

We) for te[—h, 0],
x(t) for f¢|0, T}.

Let f: RxR™ —R" and y¢ C(| -4, 0], R") be two given continuous functions.
We will consider an equation:

(%) X'(t)y=At, yx(t—h,), ..., yx(t—nh,)).

vx(t)= {

By ¢(y) we will denote the set of solutions of this equation on interval [0, 7]
i. e
o(y)={xeC([0, T), R, x(0)=y(0) and x satisfies (=) for £¢[0, 7T]}.

Now we define the DPoincare translation operator ®; for problem (%)
Assume that ¢( y) is a non-empty set for each ye¢C([—#4A, 0], R"). Then we
have a multi-valued map ¢: C(| -4, 0], R")—C([0, 7], R*) which is given
by the following correspondence y-—o(yv). Let S: C{([0, T'], R")— C([— 4, 0],
R") be given by the formula S(x)f)=x(7+£). We consider the map ®;:
C([—h, 0], R")y—C(|— A, 0], R") given as follows ®r(y)=Secq(y).

Remark. In the case when A=h;=0, i=1,...,m, then we can identify
C({0}, R") with R" and then we will use the following notations S: ([0, 7']
R"Y— R", ¢: R"—C([0, T), R") for S and ¢, respectively. So we have,
S(x)—x(7) and @(y) is the set of all solutions on [0, 7] of the following:
Cauchy problem:

X'(8) - f(t, x(f), x(f), ..., x(1)),
x(0) .

Ohserve that the Poincare operator @y So@: R" - R" is the same as con-
sidered in [2].
The following proposition gives us a connection between the Poincare’s
operator and periodic solutions of a differential equations with retards:
Proposition 6. Let f: R<XR"" -+ R* be continuous and T-periodic
with respect to the first variable and 0¢(I—=®r)y) for some y. Then the
equation x'(t)=f(t, x(t—h,),..., x(t—h,)) has a T-periodic solution on K.
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Proof 1T 0¢(/—®r)(y) then for some x¢@(y) we have W(t)=x(7+¢)

for t€]—h, 0. We put x,(n.7+£t)=x(t), where £¢[0, 7], n¢Z Then x, is
obviously a 7-periodic map on R. Moreover we have yx(£)=x,(?) for t¢|—h,T).
So x(t)=xy(nT+t)=x"(t)=f(t;, yx(t,—h). .., yx(t,—hy))=f(nT +1,, Xt
— k). x(t,—hy)=f(t, xo(t—h,), ..., xdt—h,)) and the proof is com-
leted.
: If we assume that the right side of equation () is bounded then (comp.
[5]) @ is a compact acyclic map. Because S is obviously continuous so ®r is
a pseudoacyclic operator. Consequently, from Proposition 1 and 6 we obtain
automatically the following theorem:

Theorem 1. If f: R<R®™ — R" is a continuous, bounded T-periodic
with respect to the first variable map and for some ball K,—C([— k&, 0], R")
the Poincare operator ®r satisfies the following conditions :

(i) 0¢ ([—Pr)(IK,)
(iiy Deg(/— @or, K,)-0,

then the equation x'(t)-f(t, x(t—h,), ..., x(t—h,)) has a T-periodic solu-
tion on R.

Theorem | gives us a useful method to check whether an ordinary dif-
ferential equation have a periodic solution. We will show two applications
of Theorem 1.

A. C'-map V: R" — R is called a direct potential for f: R<R" — R" il
the following conditions are satisfied :

(1)  there exists r,>0 such that if | x> r, then grad V(x)-+0
(1) (grad V(x), f(t, x)) >0 for LteR, Il xi=7,.

The theorem, which is given below, gives us one characterization of the
topological degree of Poincare operator ®; for the problem: x'(f)=f(f, x(¢))
x(0) = x,.

Theorem 2 (comp. [2]). Let f: R<R"— R" be a continuous and
bounded map. Assume further that f has a direct potential V' such that Ind V+0;
where Ind V--deg(grad V, B,), r>r, Then there exists r,>0 such that 0¢(/
—® YR Int B,) and Deg(l - ®r, B,)-+-0 for r>r,.

It is easy to see, that if we assume that f is 7-periodic with respect to
the first variable then from Theorem 1 follows that the equation x’(¢)=f(¢,
x(#)) has a 7-periodic solution on R in B,

A. C'-map V: R"— R is called a regular potential for f: RX<XR"<XR"*
— R" if the following conditions are satisfied :

(i) there exist p,>0, a«>0 such that

S, x, vy .oy grad V(x) >a- (| f(L x, vy,..., V) 1= L grad V(x) for | x|

Por Vi€ R
(ii) 'there exists a C'-map W: R"-— R such that

Il grad W(x) | <<igrad V(x) I for x| p, and lim | W(x) =

el a0

Let us consider the following equation: x'(£)= f(f, x(¢), yx(t- k). ...,
vx(t —h,)), where f has a regular potential V. Then we have:

Lemmal (comp. [2] or [4]). There exists p, >0 such that if x¢C([0, T'),
R") is a solution of (»+) for some y and x(0)=x(t,) for some t,¢(0, T'| then
Lx(<p, for tel0, L)
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Theorem 3. Let us suppose that:
(i) f: RXR"<XR™*— R" is a continuous bounded and T-periodic with res-
pect to first variable map.
(ii) there exists a regular potential V for f and Ind V=0. Then there exists
a T-periodic solution on R for the equation :

X(O)=fit, x(2), x(t—h)), ..., x(t—hy).

Proof. Let us consider K,—=C([—#4, 0], R"), where r>p, (comp. Lemma 1).
It is easy to see that O0¢ (/—®7)0K,). Now we will prove that Deg(/—®r,
K,)+0 for some r>p,. We will do it in three steps:

1. We claim that: Deg(/—®7, K,)=Deg(/— ®r, K,), where @7 is Poincare
operator for the problem x'(2)=f(¢, x(¢),..., x(¢)) defined analogously like
®r, i. e. Dr=35- ¢, where (p(y) {xeC([0, T], R*): x(0)=y(0) and x'()=f(¢,
xX(t),....x() for t€[0, T)}) ¢: C(—h, O, R%)—C(0, T], R") (comp. Re-
mark 1). For the proof of the above equality it is sufficient to construct a
pseudoacyclic homotopy between ®; and ®7. Let ®% denotes Poincare’s ope-
rator for problem: x'(£)=(1—2x) - f(¢{, x(¢), yx(t—h,), ..., yx(t—h,)+ rf(f, x(¢)

, x(¢)). Of course, ®?--=®r and tb‘rzﬁr. Then the homotopy H(A, y)—®%

connects ®; and ®z. It is well known (comp. [5]) that H is a pseudoacyclic
map which satisfies assumptions of Proposition 2 (0¢(/—H)[0, 1]<0K,) from
Lemma 1). So we get Deg(/—®r, K,)=Deg(/— o7, K,).

2. Let e: C([—4, O], R")— C([—+h, 0], R") be given by the formula e( y)¢
=y(0) and y= eo®r. We will prove that Deg(/— <br. K,)=Deg(/l—v, K,)
From the definition we have ®;—=Sc@ and y-— eoSo(p We construct a ho-
motopy between S and eoS:

R(A, y)=(1=1)S(y)+e-S(y)

Let ~(y)=R(», y). From Lemma 1 it follows that 0¢(/—r,o@)0K,) and from
Proposition 3 we get the above equality.
3. Let E” be a space of constant functions on [—#4, 0] into R". We have

a natural isometry P: E"— Rn and /g, =P~ 1o ®rcP. From Propositions 4,5
it follows, that )
Deg(/—v, K,)=Deg (/—®r, B,).

From Theorem 2 we get that if »>max {p,, t,} then Deg(/— @, K,)=+0
Hence, usmg Theorem 1 we get, that the equation x'($)=f(¢t, x(¢), x(t—h,)
., x(t—h,)) has a T-periodic solution. The proof of theorem 3 is completed
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