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DIRECT AND CONVERSE THEOREMS FOR APPROXIMATION
OF CURVES BY POLYGONS

GEORGI L. ILIEV, KARL SCHERER

1. Let T be a curve in the plane. Then we denote by I'(¢) the set of all
parametric representations of ' with respect to the interval [0, 1], i. e. T(¢)
consists of all couples (¢, ) of functions ¢(£), y(f) such that T'={(x, y) €R?; x=o(¢),
y=wy(t), t[0, 1]}.

We call a curve [ bounded if there exists a couple (¢* y*) of bounded
functions ¢*(¢), y*(#) in T(¢), and we call ' continuous if there is a couple
(¢*, w*) of continuous functions in I'(¢).

In what follows we consider the approximation of continuous curves by
polygonal lines. To be precise we introduce the set S} of splines of degree &
with 7 knots, i. e. s(f)¢ S* if s(f) has a (k—1)-th derivative in [0, 1] and if
there exist points 0=f,<# <---<f,=1 such that s(f) restricted to (¢, )
is an algebraic polynomial of degree k(i=1,...,n). The case k=1 represents

the polygonal lines.
Definition 1. We call the number

e (T):= inf inf max{|o—f|,ly—gl}
(o) £T(2) (/_g)(s:'

the best parametric approximation of the curve T by polygonal lines of order
n, where e. g. ||@—f|: =supoze<i! @(f)—f(2).

There are other possibilities to define a distance between a curve and a
polygonal line. e. g. we could replace |/-| by some L,norm. Still another
possibility is the Hausdorfi-distance. .

Definition 2. Let T and 0 be curves. Then for a>0

Fo: ={(x, y)eR:(x=EP+(y—mp=a (§ )T}

is called an a-neighborhood for T'. Defining the same for 8 we call r(T,6):
=inf{a:TcOe, 0T}, the Hausdorff-distance between T and 0.
Definition 3. We call the number

e (T) := inf ‘ r(T,(f, &)

/8ES,

the best Hausdorff-approximation of T by polygonal lines of order n.

There are many papers (see [1—4]) which study the best parametric or
Hausdorff approximation of curves by polynomial curves, splines curves, etc.
(Definitions 1-3 can be found in [1]). The main results in these papers are
upper estimates of the rate of these approximations, called direct theorems,
They are established under additional assumptions on the “smoothness® of the
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curve T. Converse theorems, i. e. results giving information on the curve by
the rate of the above defined best approximations, are so far not known. The
difficulty of their proof lies, on the one hand, in the fact that one has to take
into account the various parametrizations of a curve, and, on the other hand,
in the nature of the Hausdorff-distance.
The main result in this paper is the following converse theorem:
Theorem 1: /f T is a continuous curve satisfving

(1)  e(N<-

n

then T has a finite length.
In order to define the length of a curve it is useful to introduce (cf. [6;7])
Definition 4. If f is a bounded function in [0,1| we define for
n=12,...

(2) (fin):=  sup Z | f(x)—f(xi—1) |
0sxy=..<x, s1i=1
and if T is a bounded curve with bounded (¢, vy)eT(t) we set
@) WTim:=  sup  max{Z|e(t)—e(ti)l E|v(t)—v(tim) |}
O,\tcﬁ...gfng:l i=1 i=1

We call »(f;n) and » (T ; n) the modulus of length of f and T, respectively.
With the help of Definition 4, it is easy to see that

(4) V(f):= limx(f;n)
is the variation of f in [0, 1] and that
(5) [(T): = lim»(;n)

is equivalent to the usual Euclidean length of a curve up to factor at most 2.
From these definitions it is also easy to see that for a bounded curve T’
with bounded (¢, y) representation we have

(6) »(T; n)=max {x(¢;n), % (y;n)}
and consequently
(7) L ()= max {V(e¢), V(v)}.

The proof of Theorem 1 will be given in the next section. In Section 3
we then comment on the sharpness of this theorem. By a theorem of Korne-
ichuk (see [5]) it is easily establish as a counterpart the following direct theo-
rem [4]:

Theorem 2. /f T is a continuous curve with bounded length then

(8) el T)=0(1/n), n—

However this so-called inverse theorem does not quite match up with
Theorem 1. But on the other hand, we will show by an example in Section
3 that

(9 el(I) = O(Ap)y n—>o0,
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for a positive sequence {1,} with lim,_.. nk,=0 does not imply bounded length
of T if %, is not sufficiently decreasing in » in the sense that

(10) T A, =co.
n=1

Thus Theorem 1 is sharp in the sense that assumption (1) cannot be re-
placed in the form (9) with A, satisfying (10).

Secondly, we show by the same example that Theorem 1 cannot be streng-
thened in the sense that e,(T) is replaced by the best Hausdorff-approximation
g, (T) of Definition 3. In this respect we remark that (see [1]) g,(T) =g, (T)
and that consequently Theorem 2 holds for the best Hausdorff-approxima-
tion of T.

2. For the proof of Theorem 1 we need som¢ preliminary results.

Lemma 1. For s¢ S8} there holds

(1) V(s)<n||s|.

This follows directly from (2) and the definition of S!.
Theorem 3. For fe VUC|O, 1] we have

(12) Cx(fm=12{ifl+ E B}

where

(13) Ey(f): = inf [ f=s.
:(S;

This result follows from some known inverse theorems but for the sake
of completeness we include its proof here.
Proof. We introduce s,€ S by E(f)=|f—s, || forn=1,2,... . Setting

o, =Sy —Sy— for 1=0, 1, 2,..., where s;3: =0, we obtain

é‘ S (x) —flxi—1) |$él [ () —Som (x) |+ | f(xim1)— Sgm (xi—1) |

2 ) — l.
+‘__‘ l§0'°l(xt) o, (X))

But since the function o, belongs to S.:,.. it follows from Lemma 1 that
tl |6, (x)— 0 (xi—y) | = V(@) 2241 || 0, | 24 (Il S0 || 4| f = S0 |-
Furthermore we have trivially
E {1 f)— S () |+ f (i) = S n(x-1) [} 5 20E (/)
so that with Eia(f): =] fl

1) E S —fim) [S2Em()+ E 2 [Eg ()4 Ena ()
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Using for /=2
ol—1
(15) 27y (f)= . E(S)
r=20"2 1
we derive from (14) that

il

(16)  w(fim) 2B () +4E ELN+8 T ELI+HOES)+2 111,

Now we choose m such that 2™ <n<2™+!. Then observing 2n<8. 271
and applying (15) for [-=m+1 the theorem follows from (16)-

A further basic idea for the proof of Theorem 1 is the use of the v,-mo-
dulus introduced by V. Popov [8].

Definition 5. For every function f on [0 1),6>0 and k=12,...,
we define
(17) v,.(f:8):= inf  sup {| A% f(x) 2] p(x+ kh)—p(x) <38},

nEV x.x+kh([0)

where Aff(x) denotes the k-th difference of f in [0, 1] with increment h, and
where \/ is the set of all functions p with bounded variation in (0, 1].
l The following properties of the modulus v, established in [8] will be used
ater on:

i) the inf in (17) can be taken only over all non-decreasing functions in
V. and only over continuous functions in V if f is continuous,

ii) v,(f;8) is a non-decreasing function of §,

iii) v (f:8)==e,(f;:3) g0
where ,(f;8) is the k-th modulus of continuity defined by

0 (f:8): =  sup (| ALf(x):| h|=5}.
x.x+ khE[0,1)

The following result proved in [8] will be of primary importance for us
(we need only the case £-1):

Theorem 4. Let feC[0,1] and k=1 be fixed. There exists a constant
N, depending only on k, such that for any integer n and k=1:

27R Iy (1M =EX(f )= Nyvas (f5 (R+1)/n),
where ER(f): =inf; gk | f—s|
We need also the following property of the modulus v,:
Lemma 2. Let 9€Cl[0, 1] and let p be a monotone increasing function
satistying p(0)=0, p(1)=1. Then, setting w(x): =o( p(x)),
(18) V(W 8)=vye;d)

holds.
Proof. We consider only the case k=2, the general case follows along
the same pattern. By definition we have

(19) vo(y; 8)= inf sup sup Lo plx+2R)—20( p(x+ h))+o( p(x)) .

pu(V Oxst (e +2h)—pu(x) |58

Now, assuming 2>0 (the case 2<0 is treated in the same wag). we set
t:=plx), p(x+h):=t+h, p(x+2h);=t+h;+hy so that £,>0, 2,>0.
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Setting n(£):=p(p~(¢)), £€[0, 1], where p—' is the inverse function of p,
we see that the mapping peV -—-n¢V is one to one with p(x)=n( p(x)). Hence,
it follows from (19) that

(20)  vy(y:8)=inf sup sup L@(t+hy+hs) —20(E+R) +0 (0) .
nV 0=t=1 gl +h+h)—nlf) =5
But since for fixed £¢[0,1] and neV
sup | @(t+hy+hy)— 20t hy)+o(2)
(¢4 +h)—n(d)] 58
sup Ot +h -+ h)—29(t +h)+o(t)

T it A ()| S8
it follows from (20) that
(21) va(w 5 8) = va(@ 3 3).

Now we can reverse the roles of @ and y (as well as of x and 7) by
starting from y and setting ¢(f):=wy(p~'(¢)) so that (21) follows with y re-
placed by ¢ and conversely.

This proves then the lemma for 2=2.

Proof of Theorem 1. We actually prove a slightly stronger statement,
namely .

(22) w(T:m)=clZ & (T)+max{l|fl, ir4h
with a constant ¢ not depending on n, where (f, g) is a parametric represern-

tation of T. By (5) the assertion of the theorem would then follow.
By Theorems 3 and 4 we get then the following estimates

(23) x(fim)y=12{ f| + ‘£IE,(f)}§l2{"f{ +N -‘1:"1 vo (15 2/0)},
(24) w(gim=12{lgl+ _;21 E(gh=12{ gl+N inll va(g; 2/i)}.

On the other hand, we obtain from Definition 1 of ¢,(I') and Theorem 4
that there exist (f, g)¢€I(#) such that

(25) 514/21(1")*”’“‘{,”' = Ey 21(f:)27:-v9(f,-= *[;%T)i—i—v?(f,; %)
. - - ] -
(20) ﬁ[i,r?)(r)+l—]%be‘l:'im (&) ::% va(g, s —ﬁ;—zl—);:% va (&5 )

In order to combine (23) with (25) (or (24) with (26), respectively) we
will use Lemma 2. Before doing this we observe that the pairs (f, g) and
( f., &) can be assumed as not having periodes (e. g. (f, g)€TI'(£) has a period
when there exists a point £,€(0, 1) and a number t>0 such that [£,—=, 7,€71]
—[0,1] and f(¢,+h)=f(t,—h) or g(t,+h)=g(t,—h) for any k¢[O, t]. Other-
wise, if e. g. (f;, g;) would have a period, by an appropriate transformation of
the parameter we could easily construct (f;, g})¢€ I'(£) for which E,(f)=E,(f)),
E;(8)=E(g)

If (f, g and (f, g) do not have periods it is easy to see that there exist
monotone increasing functions ¢;, y, on foe. 1] with @(0) =y (0)=0, o(1)=y{(1)=1
for i=1,2,... and for which f,=f(9,), & =gV,
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But by Lemma 2 it follows then that vy(f;: 2/i)=va(f;2/0), vao(g;; 2/i)
= vy (g; 2/i) so that we can combine (23) with (25) and (24) with (26) yielding

% (f:n) ;1-2{:;fj‘+4/v,,fl ez (T)+ 4N, | £},

x(g:m=12{]| gl +4M Z ey (T)+4N, | g]I}-
Observing
2 8|i:-_)|(r)‘j_\'2 z e,(l’)
=1 i=1

these inequalities establish (22) with ¢ =12(1+44M,) by (6).

3. In this section we show by the example of a curve that Theoremn 1
cannot be sharpened within two respects. Its assumption X,-,¢&,(I')< o cannot
be replaced by &,(I)—=0(x,) where {1,} is a non-increasing sequence of num-
bers satisfying lim,_,., ni,=0, but not £7.,2,= <o, nor ¢,(I") can be replaced
by the (smaller) numbers ¢,(T)" of best Hausdorff-approximation. This exhibits
an essential difference between this kind of approximation and parametric
approximation of curves.

Our example of a curve I, is simply the polygonal line connecting the
points P,=(xp Y2), k=1,2,..., where x,=1—27% y,=(—1)*\,.

Obviously, the length of T, is larger than 2E7 oA,=<o. On the other
hand, T, is parametrizable in the form (£ @(¢)), 0=£=1, where @(£) is a conti-
nuous piecewise linear function. As an approximating polygonal line we take
the curve (7, ¢,(¢)), where

‘P(t)' 0 :t{xn+l'
P (t) .= Yni1(1—2)

1—x,. ° .Y"+|'\_t\]. )
Then certainly ¢,(#) is of class §) since it has n knots x, ..., x,4 and
(27) [0—@, |=hpr =2,

since the peaks of ¢ -—¢, have height at most A,,,. Furthermore, we have
(28) £,( F)y=2-"

since the Hausdorff-distance between the curves (4 ¢(£)) and (¢, ¢,(¢)) is less
than 27" To see this we observe that starting on any point of (£, ¢,(¢)), £~ x,41,
and passing along a line a parallel to the x-axis we hit a point of (£ @(¢))
within ¢.-x,, thus within a distance —=2—" Conversely, when starting from a
point of (¢, ¢(f)) we reach a point of (¢ @,(f)) within a distance <2". Now
(27) and (28) show that T, has the desired properties.
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