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A SIMPLE PROOF OF KALANDIYA'S THEOREM
IN APPROXIMATION THEORY

N. L IOAKIMIDIS
17 A new proof, simpler than the original one, of Kalandiya's theorem in approximation

theory (concerning the approximation of Holder-continuous functions by polynomials and the
Holder-continuity of the corresponding difference) is proposed.

1. Kalandiya’s Theorem. In 1955 A. I. Kalandiya proved (with the
help of S. M. Nikol’'skii) the following theorem in approximation theory

for real Holder-continuous functions f(x) along [—L1][1;2]:
Theorem. Let a function f(x) of the class Hy be given. Let for every
natural n there be an algebraic polynomial p,(x). for which

(1) f(x)—palx) < Ane, x€[=11]
where A, is a constant. Then the following estimate is valid .

| rXe)—ra(%1) | < Agn=+7",

(2) max =
xyxof[—1.1] [ xo—xy |

where

(3) T X) = f (X)=polx),

B is any positive number such that 2p<a and Ay is a constant depending

on u and P.
We recall that a function f(x) belongs to the class H, of Halder-con-

tinuous functions, provided that

(4 fla) f(x))| =A3 xy x|
(Here and in the sequel A, denote positive constants.) We also recall that (1),
that is (because of (3)),

) )= Ane xe[ L

for f¢ H, holds always true for some appropriate set of polynomials p,(x)
This is a well-known result of approximation theory [1-3].

The aforementioned Kalandiya’s theorem has been widely used not only
by Kalandiya [1;2], butalso by many other researchers (see,e. g.,[4-9]) for the
proof of the convergence of quadrature rules for Cauchy type principal value in-
tegrals and of the quadrature method for the corresponding singular integral
equations. Because of the importance of this theorem and its great applicabi-
lity, we feel it worth-while to give a second proof of it, in our opinion much
simpler that the original one [1;2]. This proof is based on the method of thin-
king used by Sesko (Sheshko) [10] and Makovoz and Sesko [I1] for
the estimation of the error in quadrature formulas for Cauchy type principal

value integrals.

SERDICA Bulgaricae mathematicae publicationes, Vol. 9. 1983, p. 414—410.



A SIMPLE PROOF OF KALANDIYA'S THEOREM 415

2. Proof of the Theorem. By taking into account that
| PalXa) —pulx)) || [ (Xa) —Palxa) |+ f(x))—pulx)) |
+| f(xa)—f(x1) |, xp2 xa€[— L1},

for the polynomial p,(x) approximating f(x) in Kalandiya's theorem, as well as
(1), (4) and the result of Steckin [I2] for the derivative of a polyno-
mial p,(x)

PR = e (2sin L ) xe[— L1
(where o denotes a modulus of continuity), we find that
(6) |p,(x) =Amn*e, x¢[—-1L1]

Next, we consider two cases for the difference x,—x, (of course, assu-
ming always that x,, xo€[—1,1]):

(i) | xo—x,|=8,, where 3, is an arbitrary small positive quantity depend-
ing on n, which is assumed to be of the form [10;11]

(7 S;=n"7"%>0.

(The exponent ¥ will be determined below.) Then, on the basis of (5), we find
that

(8) | Zal ) —ralxy) |

oy =247, x, X €[— 1], | xg— X, | =8,
| Xa— X%
(ii) | x,—x,|<8,. In this case, since (see (3))

() —re(®) | | f(xe)—f (%) | +| Pr(X2)—pn(%1)
[xa—xy B~ | xs—x P Xo— Xy

| xg—x, 1P,

taking into account (4), the mean value theorem:

PrlX2) —pn(x1) =p.(E). EE(xy Xg),

Xo— Xy
as well as (6) and (7). we find that
9) L) =m0 | g b 4 A2 a1 xo € [1L1] | Xe— Xy | <8

| Xo—xy |

By comparing (8) and (9), we observe directly that the best selection for
/the exponent y in (7) is y=2. For this selection of y, Kalandiya’s theorem,
(2), follows from (8) and (9).0]
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