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UNIFORM CONVERGENCE OF PADE APPROXIMANTS.
GENERAL CASE

RALITZA K. KOVACEVA

Let f(z)=Xf 27 be a formal power series. lboreach pair (n, m) of positive integers, n,
mE N, we denote by m (f) the Pade approximant to s of order (n, m). All the the-
orems about convergence of sequences of Pade approximants to f in its domain of holo-
morphy Q(f) (on compact subsets) refer to convergence in capacity. The question about
the uniform convergence is studied in this paper. Holomorphic functions are constructed
for which there exist sequences of Pade approximants which converge to f in Q(f) only
in capacity. A function is constructed, holomorphic in the unit disk, for which there is a
sequence {m & ng¢AC 47, such that m,,, ——2f only in the disk D’={z, [z2/\/0,85}.
’ ntA

Let

(1) fe)= E fa

be a formal power series. For each fixed pair (n, m) of positive integers, n:
m¢N we denote by # n,m the class of all the rational functions of order
(n, m):  Rppm={Pn/Pm» Pm+=0}, where p, and p, are polynomials oi
degree —<n and <<m, respectively. Let’s denote by =,  —=mn, . (f) the Pade appro-
ximant to f of order (n, m). It is well known that m,, is a rational function
in the class #,, which gives the best order of approximation to (l) in this
class at the point z=0. Another definition of =, ,: the numerator p and the
denominator ¢ are determined so that the following conditions are satisfied :

(2) (f.q—pX2)=A, 2" +higher degree terms;

A, . is a constant. Both definitions are equivalent (see [1; 2]). The function
n,. . always exists and is unique in spite of the fact that p and ¢ are not. We
set n, . =P, m/Qum Where P, and Q,, have no common divisor and Q,,, is
monic. The zeros of Q,, are called free poles of =, ,. It is well known that if

(f = mm)(2)= A, 2" "+ =% 4 with £>0, A, = Const=0,

then n, , € #, 4 s If ®,, gives an order of approximation to (1) at z2--0
not less than n+m+1, then (2) holds with p=P,, and ¢=Q,.,. If ris a
rational function in the class #,, which interpolates f at the point z2=0 not
less than n+m+1 times then r==mn, .

If we order the Pade approximants in a square scheme, we obtain the
Pade-table to (1).
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It is well known that the Pade-table is infinite, if and only if (1) doesn't
represent a rational function. If f—=p,/p,, p, 0, degp,—=+k, degp, - (, then out-
side the rectangle with corners at (0, 0), (0, /), (/, k) and (%, 0) there appears,
in the Pade-table, only the function f.

The reader can find detailed explanations of all the questions connected
with the existence and uniqueness of the Pade approximants and with the
structure of the Pade-table in the monography of Perron [I] and in the
one of Baker [2].

Suppose, now, the power series (1) can be extended as a function, holo-
morphic in the unit disk D(f¢ H(D)).

In this paper we shall consider the uniform convergence of sequences of
Pade approximants to f on compact subsets in 0. To investigate this problem,
it is enough to discuss two cases: sequences {r, ,} with a fixed number m of
the free poles, meN (or sequences {n:,,,,,,n} where /m, goes to infinity very
slowly in comparison to the degree n of the numerator: m,/n—0 as n ~ <),
and sequences {m,,} in the diagonal in the Pade-table of f (or sequences, very
closed to the diagonal: {m, .}, n,/n,-~1 as n-+-). A short calculation shows
that =, ,(7) - 1/x,.(1/f), so that the problem of convergence of columns in the
Pade-table can be reduced to the same one with respect to the rows.

In the case of rows the following theorem is valid (see [3]).

Theorem A, Let f¢ F(D) and m¢N be fixed. Then the sequence {r,,}
converges, as n— o, in capacity to f on each closed disk D,, p<1,D,—{z,|z|
< p}. (For each compact set K in C the capacity can be defined as (see [4])

Cap K- lim min A,
n—sco ’l(pK
where Py is the class of all polynomials of the form A(2)-2%+ ... and
llxllx = max | (x)(2) vi: remember that convergence in capacity on the compact
set X means that for each positive number & we have Cap{z ¢ K, (x),(2)| > ¢} ~0).
n—oo

Denote, now, by 0,, the largest disk in which (1) can be extended as a
meromorphic function with not more than m poles (nultiplicities included).
Then the sequence {m,,} converges to f, as n-— o, in capacity on each closed
disk Dy, Dp—D,. If, further, D is the largest disk, in which (1) has a mero-
morphic extension and if m, —O(n), n— <, then {n,,.,,,"} converges to f,as n— o,
in capacity on each compact subset of D..

Both results are announced by Goncar in 1976 (sec [3]). They genera-
lize the classical theorem of Montessus de Ballore according the convergence
of {n,,} in D, if f has exactly m poles there.

In both theorems of Goncar the assertions refer to convergence in capa-
city. There are no statements about the location of the free poles in 0 (rem-
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ember that f¢ AH(D)). The behaviour of the free poles of the Pade approxim-
ants inside D can be verv *incorrect” so that we can’t speak about uniform
convergence to f in D (on compact subsets). We shall illustrate this by an
example. We shall prove the following

Theorem 1. Let A(n)={n,}, A(m)-{m,}, ke N, be sequences of positive
integers, m,=0(n,) as ReN, n,+m,+m,. <n..1 for ReN. Then there exists a
function f, fe¢ H(D), such that the set of the free poles of {x,, m(f)} is
dense in D, K¢ N.

The proof of this theorem is an application of the method of Rahmanov
(see [7]). Suppose {a,}, k¢N, is a sequence of complex numbers which is dense
in D. Each function g,, determined by

l(2)= Z"ka:mk(l —ay )mk(z_“k)wm” =X g2
v=n,,

is analytic in the disk Da, ={z, z/</a,l}; for each v=n, we have

Gev=(1/2n)) [ t7"Igy(t)dt.
=la,?
We set

o Mpt+m .

A2)=1+ L L g.2¥= I fi2"
k=1 v=n, v=0
It can be verified that this power series defines a function, analytic in D.
Indeed, let véN be a fixed integer. If n,+m,<v<n,,, for some k, then f,=0.
Suppose n,~<v=n,+m, for an integer k. Then fv=g,, and there follow the
estimates fvg_:;a,,;"*"”"'*k\_l. Consequently the inequality lim|f,|'¥=1 holds,
VEN

this means that f¢ H(D). On the other hand, we have from the definition of
g,(z) and f(z) that

n +m
k—1 k—1 | n, im m —m
flz)— p> fuz¥ = z2ka k(1= lay)) Mz —a,) *
va==()
(Ilv Fmy) - 0o n,+m, oo ,
X T gL g, L I gz - - LN
v=/ l.=n, { " v=k+1 l=n, l;l7nk+mk
Consequently
n +m
h—1 k—1 n, 3m m —m
y k
e Mx(2) - fv+z tan *(1=lay) *(z—ay) ™
veid)

In this way we have constructed a function f, analytic in 0, such that- the
set of the free poles of {n,,.. m,}, RE€N, is dense in D. In this case the Pade-

approximants {m, . m,}, REN, don't converge uniformly on compact subsets of

D, in other words this sequence doesn’t reconstruct the corresponding function
in its domain of holomorphy.

But, if it is previously known that all the functions =, , m,=0(n), n—co,
are, for n -n,, analytic in D, then the convergence in capacity in the theorem



29 R. K. KOVACEVA

of Goncar means uniform convergence. Let's remind the reader of the follow-
ing result of Goncar (see [3]):

Theorem B. If Q is a domain in C and if the sequence {¢,}, n—--
of analytic in Q functions converges in capacity on each compact subset of
Q, then the convergence is uniform (and the limit function ¢ is analytic in Q).

Consequently, if m ¢ N is a fixed integer and if for all n, n=>n, the func-
tions m,, are analytic in D, the sequence {m,,} converges, as n— <o, uniformly
on each closed disk D,, p<l1.

Consider, now, the question about the uniform convergence of the diago-
nal m, (f)—=mn,f)), n€N, in the Pade-table of f(f¢H(D)). In this case there
are no general results, except the theorem of Nutall (see [5]) and the one of
Pommerenke (see [6]). Nutall has investigated entire and meromorphic fun-
ctions, Pommerenke —— functions analytic everywhere in the complex domain
C except on a set of zero-capacity. In both cases m,(f) converges to f, as
n€N, in capacity on each compact set in C.

We can indicate functions, entire in C, such that the sequence of the cor-
responding Pade approximants n,, n— -o, converges uniformly on each closed
disk D,, R>0. For instance, the function f(z)=¢€® has this property (see [1]).

As in the case of rows, the essence in the theorems of Nutall and Pom-
merenke lies in the convergence in capacity. W allin (see [11]) has construc-
ted an entire in C function for which there exists a sequence A—N and a
compact set e such that m,(2)— -, as n€A, for each z¢e. We shall prove the
following

Theorem 2. Let A ={n,}> |, be a sequence of positive integers, n,>2n, _,,
ny/n, . ,—0, keN, ny,—~0. Then there exists an entire function f such that the
set of the free poles of {n, (f)},a is dense in C.

Let {a,};> , be a sequence of complex numbers. We assume that {a,} is

dense in C and that lim (1 -‘r'ak!)"v"k—ol as k¢N. Each function, defined by
Jo— o

"_‘ ’n —n n

guz) -2 k(z“ak) ke

is analytic in the disk D,,k,. For each ZEDm’ we have the expansion:

k

gl2)= T g2,
where *
8av=(1/2mi) [ ¢! g (H)dt.
HE lfinkl

We set

2n,,

f2)=1+% I guz'= I fz*
v=1 1 ny, k=0

We shall estimate lim f|'v. Let v be a fixed integer. If 2n, <v<n,, ,, then f,- 0.

V—p 00

Suppose that n,~-v~2n, for a integer & Then

2
i 1/ "k/”k lrlh ",
fﬂl,v.«(“_la..jrnf) R R (1+]a,)) .
) 2 2, v 2

(1 +la) *
This gives lim,,.|fu/"¥=0; consequently, f is an entire function,
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We obtain further, for £-0, 1,... that

.‘nk_l
M (2)= I fur+2"k 2z —a) e T
V!

1 n

21 o . 2 2n —
Really, {£ *7' fiz¥+ 242" (z—a,) *' *¢R, .m, and
- R

) P }‘ 1*" = -]
’ - k
fz)— = fuzv—2"kR2-"r(z2— a,) = X g, 2 —

v -0 v=k l=n, !

. . 2n,, —
- X g2f= X DI S-L DI -1

r v=k+1 n 1=2n +1
i v k

Let’'s return to the case of rows, n— o, m€éN is fixed. If there is a
sequence A, A=N, such that n,,,€H(D) for n¢A, then {m,,} converges to f,
as n¢ A, uniformly on each compact subset of . Consider, now, the same
question in respect to the diagonal in the Pade-table: if n,¢H(D) for n¢A,
AN, can we assert that n, 7, as n¢ A, uniformly on each closed disk D,,
p<l. Apart from the special case of entire and meromorphic functions (theo-
rems of Nutall and Pommerenke) there aren’t any general results in this con-
nection. In 1973 Zinn-Justin proved that in the upper conditions =m, con-
verges to f, as n— o, on each closed disk D, with p<1/y3 (see [8]). This re-
sult follows from the estimate of the interpolating formula of Hermite (we assume

that deg Q,=n and f¢ H(D))

24l
f—mun=(1,2r) [ Q) =3 P UR G |n
ning = V=R Q@) ¢ T z) t—z 'Dp

< Cl 2 Q)T (2) 1 B,/ min [ 21/ Q(O)T ((£)ir =15

T, is an arbitrary polynomial of degree =n; C is a constant, C-C(p). If we

choose 7,(2)=11}_(2, ans + 1), where a,x k—1,..., n are the zeros of Q,, we
obtain that lim,...| f— m,i5%<1 for each p< 1y3. GonCar has investigated the
)

upper estimate in the right side of the last inequality : there follows from his
results in this connection that =n,—f, as n— o, on each closed disk D, with
p<1/1, 587 . ... (see [12]).

We can easily name functions, analytic in D, for which the corresponding
Pade approximants n, reconstruct them (in the sense that {r,} converges, n— co,
uniformly on compact subsets) in the whole domain of holomorphy. Let’s re-
member, for instance, the functions of Markoff’s type: let pu’(£)>0 on the real

segment A =[ -1, 1], the function ws) - [u(t)dt/(c—t) is analytic everywhere
A

in C apart from A. We set p(1/2)=f(2); it is well known (see for instance [10])
that n,=2f, n +-o uniformly (and even geometrically) on each compact set in
C—(=wo, =1JU[1, =2).

It is more difficult to point at a function f, f€¢ H(D) for which there is a
sequence A, Ac-N, such that the functions =, (f) don’t reconstruct f, asne A,
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in the whole unit disk /). Rahmanov has given such an example. He has con-
structed a function f, £ ¢ H(D), for which there is AN such that =, ¢ /1 D), neA
n,2f, as n¢ A, only on each closed disk D, with p<08 (see [7).

Now we shall construct another example function g with the indicated
properties. We shall prove the following

Theorem 3. Let A ={n,} be a sequence of positive integers, n, -0,
ne>2n, ., k=1, 2..., and n,_,n—0 as k— -. Then there exists a func-
tion g, g¢ H(D), such that n,(g)¢ H(D), n€A, and mn,—~ o as neA, uniformly
on each compact subset of the domain QD {z, z?>2e 2—1}

Consequently, in this case the sequence m(=m,(g))., n€A, converges to g
uniformly only on each disk D, with p<y2e + e*—2e - 085...

The scheme of the construction of the function g is an application of a
method of Wallin (see [L1]).

Before beginning the proof, we formulate two lemmas.

Lemma l. Let 9(z) =X 0wz be a formal power sereis; for each n¢N
we set

[o())m— T 2% (9(2))m—= L @u".
van v.n

Then there holds the representation w,(0Xz)=m,([@(2)]e2m).

The proof of this lemma follows immediately from the definitions of Pade
approximants (see [5]).

Assume, now, that (¢ —m,(9))(z) - 0(z*"*'). Then Lemma | gives

[0(2))2n) — 7@ N2Z) = ([9(2)](22) Q(2))i20+ 1)/ Qu(2)
and

(0 = (ON2) ~ ([@(2)] 2 Qu(2))2n+ 1)/ QR 2) +(0(2))2n+ 1)

Lemma 2. Let n¢N. Then the system of equations

x, = Const +0, -‘”l(g,) }'X“(:) 0

xoff) + 1 (1) + x(5) =0
1) 2 (1) + - b)) =0

has unique set of solutions x,=(— l)"(n +:— I). vl 200

The proof of this lemma has been given in [l1].

Let, now, A={n,} be a sequencc of integers, determined as in The-
orem 3. We shall construct a function g with the required in the theorem
properties.

We set

g(z2)= i”gvz".
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let fix an integer k. We shall describe the #%-th step in the construction of
Assume, the first 1+ 2n, , coefficients are already chosen, g, =1, and assume
thlt they satisfy the conditions

(3) o1, v=0,1,..., 2n, .
We shall require that (3) holds also for gy, 1 -- - &one
We set, later, m, =P, 'Q,, and
P, (2)= Ao ¥+ ...+,

Qu (D) =byo2™+ . .+,
We want, also, that
(H (8 — mnue)(2)=0(22"+ 7).
The last requirement gives (see (2)) the following system:

O pony = Aoy

&10kn,+Okin,—1=Apny—1

(5)
gnkbl".nk_‘:"gn,‘.v:blc.rl,‘.—l':‘P e +bl-.n “Ar
and
Enjpt Opnyt - T Gany 41- bran, T --- + Zobro=0
(6)

- ! ) ! —
g‘l'xkbk»rxL.' e Tg.-rk Ty bk-?nk_l+ ° e Tgnkbk-o‘o'

The system (6) consists of 7, homogeneous equations, the coefficients
&2, 11> - Lan, ArC unknown, we shall choose bxg, .. . b,_,,k in a proper way.

Because of Lemma 2 we have =, -, ([g]2.,) and

- 2"k
(1) l&’(z)l('.’nk) - n,,k(z): (an(z))v:‘:“ gvzv)('lnk-»annk(Z)-
The calculation of (Q,,k(z)[g(z)](g,,k,)(g,,kH) gives
Il " 2n
(( Z &2 )(Z bk,Z"* DNizn+1) = 002" * b3 lgvzv
n+
Il
+ b, 2" Z a2 .. +bk,,,k_1g2nkzank-

nyt2

We set b,, ... b*‘-“’u—n—' -0 and g, +an,_+2= - .= Gon, = 0.

With this choice (7) gets a simple form, namely

(8) ('g(z)l.‘nk) . Qn‘,(z))(%k +1) in‘(Z) = gnk + 2,.k_|+l2”.+'/Q,,k(Z).



V6 R. K. KOVACEVA

Following the schema of Wallin, we set Q,,k(z)_-(z—l)"k“ﬁnk~-1. Because of
LLemma 2, we get the following set of solutions:

n, ——2/1,?”

(9 ( vl
s ) gnkr'.’nk,i' 1—-v gnk-i—iﬂk ERRRAY v )

, v=1,..., n,.

Now we shall choose g, in the way that (3) holds also for

""2",\,_17“
8an, -+ o Bupran, o1
For v—-1,... n, we have the following estimates:

) Fy—° —92 VA 2 On 9 ,
n,—2n, | +v 2) (n,—2n, | +v ... '"A'”"”kj-l)? <\._nk 2, Y
v v! v

—n

- LRV en, —
k—1 < 2"k R
v v!

In order to estimate the last expressions we have to remember that for each
sEN the function @ (x)=(es/x)%, x -0, has a maximum at the point x-s.
Consequently

<.)n nk

‘n,—2n -v—1
( k k—1 ),\Q”ke”k‘"k—l.
v o
Combining (9) and the last inequality, we obtain
: on _ ,
(10) Gan, v Bngran, 1 2 e k=1, v L e

) .’nk,‘1~1"("~’f’)'“"”~ Because of this choice
we get that (3) holds also for g, i1- - o Lonye

Since Q,, (1) =0 the Pade approximant to [g]mk> of order n, will be equal
to m,, P,,k/Q,,k (see (5) and (6)), if P, (1) 0. Let's turn to the system (5),
For P,,k(l) we get the following expression

Now we choose g, .9, 1 SO that g, ..

’!”I.-_ \ "k n . "y
Py - £ gl X b))+ X &b
v=:l) l __'nk_‘ \w.’nk Al:l l=v
(we note that b,, - ... - b,‘,_.z,,kwl_lAO, brr= (=D (np=2np L2044, -

The calculation shows that P,,k(l) depends on g, . 9, 4, as on a multi-
plicative factor; since g, 2., +1 +0, we get that P, (1) 0. Consequently
T P,/ Qn, where Qn(2) (2 — Iyt —2n, ; and the coefficients @,o, ... @4,
are determined by system (5).

By this the kth step in the construction of the function g is finished.

Let's summarise: we have chosen the polynomial Q, (2) (z— 1) 2% 1
and the coefficients g, -+ 2"&»—1 + 1.0 Gny (&n = = Euyran,_, 2 -0,

Bngtang 4 +1° (2e)"*, so that m, —P,/ Q,,h. where /’,,k is defined by system
(5), and there holds the inequality (see (10))

(11) g.,,,hlw'; v, '~’”h"3”,‘,,.
There holds also the representation (8).

Combining (11) and (3), we get g/'v=1,v 0,1, ..., 2n,. But & is an
arbitrary integer, £ - 1. Consequently the function g determined by
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o '.’nk
g2)=1+ X z a2
k=1 v= 2nk_l~‘ 1
is analytic in D and for each n,¢ A there holds the representation

an
(T 2'Qu(@))n, -1y =27 1/(26)%Q (2) -
v=0

To finish the proof of the theorem we have to estimate |(g— n,,k(z)[. For
each z¢D we have

2n

: k : .
(€= Rp )2 = T g2z =1 2)g, =@ en, oy

-2 (2e)'k(z — 1)"R 2 —1| — O 2|24 HT),

Let K be a compact subset of the domain Q={z,|z2>2elz—1}ND. For each

2¢Q we have
lim |22"%(2e)"4(z — 12" —17"k Vi =C > 1

A
(we remember that n, , nx—0 as k—z=o), C is a constant which depends only

on K. This gives
lim min|(g— rt,,k)(z) [ Vme>1

n At

consequently, n, —-o as k—oo, uniformly on the compact set Kc=Q.
By this we have finished the proof of Theorem 3.
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