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WAVE FRONTS OF SOLUTIONS TO BOUNDARY PROBLEMS
FOR SYMMETRIC DISSIPATIVE SYSTEMS

VLADIMIR S. GEORGIEV

The work studies the wave fronts of solutions for first order symmetric strictly hyper-
bolic systems with dissipative boundary conditions. Using a suitable modification of the
thechniques, developed by V. Ivrii, we obtain a variant of his well-known results on the
propagation oi wave fronts. Moreover, the finite speed of propagation of singularities is
obtained for a large class of boundary problems, used in the scattering theory.

1. Introduction. In this work we study the singularities of solutions to
the boundary problems for first order symmetric systems with dissipative bo-
undary conditions. Our approach was suggested by the ideas, developed by
V. Ivrii in [1]. Applying the main theorem in [l], treating the systems with
strictly dissipative boundary conditions, V. Petkov obtains in [2] the fi-
nite speed of propagation of singularities for the transmission problem connected
with the wave equation. In order to cover general dissipative boundary con-
ditions, Ivrii used an estimate in suitable Sobolev spaces. The check of this
estimate becomes complicated for the dissipative boundary conditions, which
appear in the scattering theory for systems (see [2; 4]). Our goal is to obtain
a result, similar to that given in [1], and applying this result to conclude that
the speed of propagation of singularities for the systems, used in [2; 4] is
finite.

We shall examine the singularities of solutions for first order systems,
having the form

(1L.1) P(u)=(ADx,+QXu)=0
in the domain R*XR*™!'—{x=(x,, x'); x>0, x'€R*™1}." Here A= A(x,, x’, Dy")
and Q=Q(x,, x’, D,’) are (dXd) matrix-valued pseudo-differential operators of
orders O and 1 respectively, smoothly depending on x,¢R+={s¢R; s=0}.
Throughout this work the space of pseudo-differential operators of order &
with respect to x’, depending smoothly on x;€R*, is denoted by L¥. The
principle symbol of the operator b&¢L*" is denoted by b, (p) with p=(x,, X',
&) €RFX{T*R"1)\0}. We consider the following boundary condition :

(1.2) (#|+,=0) € Ker B(x’, Dy-),
where B=B(x', D,’) is a (d Xd) matrix-valued pseudo-differential operator of
order 0.

Let (x™, &*)¢ T*R")\ 0O be fixed. We shall examine the singularities
of solutions to the system, determined by the equation (1.1) and the boun-
dary condition (1.2) in a small conic neighbourhood W of p*=(0, x*, &) in
REX{T*R"1)\0}. More precisely, we shall investigate the singularities of a
distribution u(x,, x’), provided the following conditions are fulfilled :
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‘ (a) p*¢ WF'(P()),
(b) (x'* &%) ¢ WHBu(O, x"))),
[ &) WF@N{o<On W=0.
Here ofx,, x/, &")eC~(W) is a real function, homogencous of degree 0 with

respect to &’. Recall the definition of wave front sets WF'(x), used in [1], for
the distribution

(1.3)

u(x,. x')e CR¥, 2'(R™1)),

Definition. Let p=(x,, x/, &HeW. We say that p¢ WF'(u) if there
exists an operator a €L° | such that ay(p)+=0 and a(u)e C=(RT><R* 1),

Our assumptions are close to those, given in [!]. First we set the follow-
ing conditions:

[ Au(p)=Aip). Qilp)=0Qi(p) where p¢ W and

(S)
]u* denotes the complex adjoint matrix of a.
() {For p€ W the matrix A, (p) is invertible and
sgn (Ay(p)) =0.

It follows from (E) that the number & is even.
(Dm) [(a) dim(Ker(B/p)))—d/2 for pc W {x, =0},
L(b) (A p)o, vy -0 for veKer (Bulp), pe WD {x, =0}
Here (,) is the scalar product in €. The boundary conditions with the pro-
perty (Dm) are callod maximallv dissipative ones.

Our last assumption is connected with the function ¢ and the constant
matrix A -A(p*):

(A)

(a) o(p*) -0,
(h) Re (A%, +Q.(p) o}z, ) p*))N0,

where v€C? and {u, b} is the DPoisson bracket of the smooth functions
a=a(x, §), b -0(x, &).

Our assumption (A) is stronger than that, given in [1], where the in
equality (A) (b) is required to be fulfilled only for veKer{AE&, + Q,(p*)). On
the other hand, in [1] the following estimate is assumed:

(1.4) |(I—myu g=0|uly+Cs( | Puja—rpr +| t|lvioo+|Bi yot|tt o124+ natt|s)

where m is the projection on Kcr(;ii‘»%-Ql(p*)). ||, is the norm in the Hil-
bert space [L,(R*>R"™1)* (for more details see Lemma 3.1 in[1]). The estimate
(1.4) plays a ceucial role in the investigation of singularities of the distribu-
tion u(x,, x’) with the properties (1.3). As we mentioned above the verification
of this estimate makes some troubles for non-strictly dissipative boundary con-
ditions. The assumption (A) enables us to avoid the application of the estimate
(1.4) in the scheme, proposed by lvrii.
Our main result is the following
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Theorem 1. Suppose the assumptions (S), (E), (Dm) and (A) are
fulfilled. Let the distribution u(x, x')e¢CR*, 2'(R")) satisfy the conditions
(1.3). Then we have

(1.5) p* ¢ WF ().

In Section 2 we prove two preliminary lemmas, needed for the proof of
Theorem 1. In Section 3 following the techniques, used by Ivrii, we obtain
1Theorem 1. In Section 4 we discuss the finite speed of propagation of singu-
arities.

In conclusion we would like to thank V. Petkov for the help and
abvices in the preparation of the work.

2. Preliminaries. The scalar product in the Sobolev space

Hs = H R 1) - - X FER™) (d times)

will be denoted by (,)so. The scalar product in the Hilbert space #*=LyR*,
H*) will be denoted by (,),. Set |[7|so=((, ©)s0)® for v¢H* and |wl|;
=((w, w),)'? for w¢#°. In the proof of Theorem 1 we shall need the follow-
ing

Lemma 21. Let the assumptions (S) and (A) be fulfilled. Given a
number x>0 consider the operator

Py —exp (—xy)AD,,+ Q) exp (x.v),

where A=A,(p*), v €L and y(p)=o(p)+ (x —x*P+ (&' & |—&*/|&* )% Then
for some constants a,>0, b,>0, independent of », the inequality

(21)  (agn—b,) |l v|2<Re (i{(Pxv, v),) + Cu( || 07 |} +|| 7|2, )+ 1/2(Av, V)50

holds for an operator ® ¢ L° - with p* ¢ cone supp(w) and v ¢ H#*+, D (v)¢H+1.

Proof. The principle symbol of the operator i[AD.+Q, v] is {4,
+Q.(p), vo(p)}- Here [S, T|=ST—TS is the commutator of the operators S
and 7. Applying the assumption (A), we can take the conic neighbourhood W
so small that for some a,>0 the inequality

Re ({A&,+ Q:(p). Vo(p)} @, w))=2aw, w)

holds for p¢ W, we¢C? Applying the sharp Garding’s inequality for pseudodif-
ferential systems, we are going to

(2.2) a, ‘l'!:i._S Re (l(lZDx.‘f'Qv V] v, '0),)+C(=: 0v 13'*' H v “3—210 >

From the equality

Py=AD\,+ Q+%[AD,+Q, v] (modL™")
we get

(2.3) Re (i(Pyv, v),) = Re ((Pv, v))+agx | v |2 —cu(| v |2+ v ||, 2, )

On the other hand, the assumption (S) implies the following inequalities:
(2.9) Re ((Qv, v),)=—b || 7 |[3,
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(2.5) Re (i AD.v, v),)=(— 1/2XAv, V)50

Now we bring together (2.2) -(2.5) and obtain the inequality (2.1). This pro-
ves the lemma.

A suitable decomposition of the unity (d<d) matrix / is obtained in the
following

Lemma 2.2. Consider (d<d) matrix B(p), depending smoothly on the
parameter p. Supposc that the number d is even and the matrix B(p) has
constant rank d/2. Then we can find invertible (d < d) matrix B(p), smoothly
depending on p, sich that the equality

(2.6) ! =n(p)+ B(p)B(p)
holds. Here n(p) is the orthogonal projection on the linear space Ker(B(p))-
Proof. Let [Ker(B(p))]. be the orthogonal complement of the linear

space Ker(B(p)). Since the linear map B(p): [Ker (B(p))]-—Im(B(p)) is isomor-
phism, we can determine the operator

B(p): Im (B(p))—[Ker (B(p))]",
such that

(2.7) B(p)B(p)=1 on [Ker(B(p))]*.

Since the matrix B(p) has constant rank d/2, we can find a smooth basis in
the linear space [Ker(B(p))]-. Respectively, Im(B(p)) has a smooth basis. Con-
sequently, the operator P(p) smoothly depends on p. Let us extend smoothly
the operator B(p) as invertible operator on C4 with the property (2.7).

Given any wv¢C¢ applying the fact that m(p) is the orthogonal projection
on Ker (B(p)), we obtain the following properties

w —(v— n(pYv) € [Ker (B(p)]*, B(pyw=B(p).

Applying these properties and (2.7), we obtain the equality v—n(p)v=B(p)B(p)v:
This proves the Lemma.

3. Proof of Theorem 1. We can assume that the distribution u(x,, x’)
has a compact support, since our analysis is in some small conic neighbour-
hood of p* Moreover, we can find a number s, such that a(u)¢#*—'?2 for
some a¢ L with a,(p*)+=0 and cone supp(a) sufficiently close to p*. Using
the assumption p*¢ WF'((AD.,+ Q)z) and (E), we obtain

(3.1) D! (a(w))€ #1721 for j=1,2,...

On the other hand, without loss of generality we can assume that A, (p) is a
constant (d < d) matrix. Indeed, we have the following equality

A(p) = A(p*)(I+ A(p)) = (I + A(p)) A(p*).

where 7+ A(p) and /+A(p) are positive matrices and Ay(p*)A(p)=A (p) A, (P*).
Then we are going to

A(p) = (I +B(p)) 2 Al p* )1 + A(p))'".
Set u=(/+ A(p))~"?v, where v solves the equation

(ALp*)+ A_)Du,+ (1 +B) 2 QU+ 8) "2 yo =0, A_ €L,
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For p sufficiently close to p* the assumptions (S), (E), (Dm) and (A) are ful-
filled for A=A, (p*), Q(p)= (/+A)~'2, Q(/+A)~*2. This observation shows,
that we can assume Ay (p)=A,(p*). Lemma 2.2 together with the condition
WF(B(u(0, x))) imply p*¢WHR(/—n)u(0, x")).

These preliminary notes show that Theorem 1 follows from the following

Proposition 1. Let the assumptions (S), (E), (Dm), (A) and the con-
dition (3.1) be fulfilled. Suppose A p)=Ayp*). If p*¢ WF'(Pu), p*¢ WF(/
—n)u(0, x'))) and WF'(u)N{e<0}N W=®, then we can find an operator
g e Lo\, elliptic at p*, so that q(u)e #>— for 0<o<1/2.

Proof. The main step is the application of the inequality
(32) (agx—bo) || v |[;=Re ({(Pxv, v),)

s=

+Cul||ov[F+[ 77, )+ (1/2X(Adp™)?, T)s.or

established in Lemma 2.1. Set v=J/chexp(—x»y)(u). Here Ji=(1—eA,)},
Apr =0y, + -+ +0x, b, cELO, by(p)=x(w(p)—3). co(p)=x(—o(p)—3) and

exp(—s™2) for s<0,
)=
x(s) {O for s=0.
Our aim is to obtain the inequality
(3.3) [| Jebe exp (—xw)@) |s=cx

with constant ¢, independent of €>0. Then Lemma 2.2 in [1] can be applied
and we shall obtain bc exp (—xy)u)¢€ #*—° for 0<o<1/2. On the other hand,
conn supp (bc)= W5, where the sets Wi={pe W ; y(p)<3, ¢(p)>—38} are close
to p* provided & close to 0. The inequality (3.3) will be proved by estima-
ting the right hand side of (3.2).

Since the property (3.1) holds, we have

(3.4) || Jecb exp (—ny) @) ||s—12<= C.

Choosing >0 sufficiently small, we may assume W cone supp(®)=®. Thus
we get the estimate

(3.5) || @Jech exp (—xy )u) ||;= Cs.
Consider the term Re (i(Pxv, ©),) in the right hand side of (3.2). Since
Pyv = PyJcb exp (—ny)u)=Jecb exp (—wy)u)+ [Py, Jecb] exp (—»y)u)

and

[Py, Jecb)== [P, Je]cb+ Je|P, c]b+ Jec|P, b] (mod L—1),
we have
(3.6) Re (i(Pxv, v),)= Cx+ Re (i(JecbPy exp (—xy)u), v),)

+ Re ({[ P, J)cb exp (—xy)Xu), v),)+ Re (i J[P, c] b exp (—xy)u), v),)
+ Re ({(Jec| P, b) exp (—xy)u), v),).

The second term in the right hand side of (3.6) is O(1) because p*¢ WF(Px
exp(—xy)u). For the third term in (3.6) we apply the equality [P, Jo)=A%Je
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+R* with A*¢L°”, Re¢L—%. Moreover, we have |Aip)| =C, |R* (p)|=C/(1
+|&’|) with constant C>0 independent of & x. Thus we have

Re ({[P, J.) cb exp (—ny)(u), ©)s)=Cx C | Jech exp (—xy)u .

Let b* be the operator, adjoint to &¢L°> with respect to the scalar product
(,)so- The principle symbol of the operator ib*[P, b] is by(p)by(P){ AL, + Q1 Vo
where b(p)=x'(vo(p)—38). Set bo(p)=(—by(p)b,(p))"/% Since the matrix {Ag,
+Qy, wol—a,l is positive, the sharp Garding’s inequality implies that

Re (iJec [P, b] exp (—xw)u), ©),) <= Cx—ao| Joch exp (—x ) (1) 5.
In a similar manner we obtain the estimate

Re (i(J. [P, ¢] b exp (— »y) (&), ©),)=Cu+C | Jecbexp(—»y)u) 3,

where ¢o(p)=(—x(—9—38)x'(—¢—38))'2 and C is independent of & and x.

These estimates, connected with the right hand side of (3.6), lead to the in-

equality

(3.7) Re (i(Pyxv, v),) < Cx+C | Jucb exp (—ny) () 3+C J.cbexp(—xy)u) |?
—aoij,L‘Fexp(—x\v)u ..

The last term in the right hand side of (3.2) is (1/2)Av, v)s0. By using
the fact that p* ¢ WF((/— n)u(0, x’))) and the assumption (Dm), we are going to
(Av, V)50 Cu+(An(), [(/—7). Jucb exp (—»y))())s.0
+(A[(—m). Jecbexp(—»w)|@), (¥))so
+ (A [(I—m), Jebexp (—nry)|(u), [(I—n), J.cbexp (—xy)]u)s,o.

The inequality («, 'U)s,u’:/-.}-!‘u.!_‘,3”.2'0‘}‘(4/[}.)5:‘UH_‘_EU.)'O for A>0 shows that
(Av, V)s0= Cup+ 1 | [(I—m), Jecb exp(—ny)] (@)!ls A 2.0. The commutator [(/—m),

Jocbexp(—x»y)] can be estimated in the same manner as [P, J.cb]. Conse-
quently, we conclude that the inequality

| [(I—m), Jecb exp (—xw)] (&) ||, 7 2
=< Cui+ C( ” Jech exp (—xy)(u) I :—?1/2.0

| Jecbexp (—wy)u) s 2ip0+ | Je cb exp (—xy) @) |:212.0)
holds. Estimating the norm ||-|[,? ,, by the norm | .|+ D, (-)|,2, and
applying the fact that p* ¢ WF' (D« + A 'Q)u), we get
|!J‘cb exp(——uw)(u)“:j’-w'd:C,‘+C|i Jich exp (—ny)(u) 2.
This estimate and the inequalities (3.2), (3.4), (3.5), (3.7) show that the follow-
ing estimate is fulfilled:
(agn—by,) || Jecb exp (— xy)u) |

Cor+NC—d) | 1.Tb exp (—ww) (@) i+ C.| Jecb exp (—ny)u) |
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Choosing ~>0, such that AC—d -0, we get

(3.8) (agn—bo) || Jecb exp(—nv)u | 2= Cu+C || Jech exp (—ny)u |

2
-

Let &(s)€ C(R) be a function with the properties:

i) &(—98)=1, E&s)=1,

i) {p€Ws; &o(p))=0} N WF'(u)=.

This choice of &(s) is possible, since the condition WF'(z) [l {p<0}N W=

holds for small §>0. On the other hand, we have the inequality

(3.10) (1—&(e(p)))co(p)=Decu(p)

with some constant D>0. Applying (3.8), (3.9) and (3.10), we are going to
(agn—0by) | Jech exp (—=y)(u) f=Cu.

Finally, choosing »>0 in such a manner that a,x —b,=1, we get the inequality
(3.3). This completes the proof of Proposition 1.

4. Finite speed of propagation of singularities. This section is devoted
to an application of Theorem 1 for first order symmetric hyperbolic systems
with maximal dissipative boundary conditions, used in [2; 4]. Let X be a com-
pact set in R” and Q =R"\ K. We suppose that Q has smooth boundary 0Q.
Consider tke following problem:

(3.9)

(£ AL00:)—0)w)=0 on QxRY,
J=1

B(x)(u)= on 0Q xR,

u(t, x)=0 for £=0,

where A;(x), Ay(x), ..., A,(x) and B(x) are (d<d) matrices, smoothly depend-
ing on x¢Q We take the following assumptions:

(4.1

(H,) Ai(x), ..., A, (x) are symmetric and for | x| >R
! we have A x)=A4), j=1,2,...,n

(Hy) g The matrix A(x, §)=,§Jl Aj{(x)&; has simple
2 =
eigenvalues t,(x, £)+0, k=1,...,d, x€Q, E=(§1 ... EHF0.

(@) (A(x, v(x))z, v)=0 for v€Ker B(x), x¢0Q, where
(Hy) v(x) is the unit inward normal at x¢oQ.
(b) the space Ker B(x) is maximal with respect to (a).

Setting ¢=maxy,vz|veti(x, £)|, we shall prove that the speed of propagation
of singularities for the problem (4.1) is not greater than ¢. More precisely,
we have the following

Theorem 2. Suppose the hypotheses (H,), (Hy) and (Hy) are fulfilled.
Let u(t, x) be a solution to (4.1) with f(t, x)e& (R<X0Q). Then if (y,t)€sing
supp (u), there exists (x,. t)esupp(f), so that 'y—x, -=c t—t,)
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Proof. We say that u(f, x) verifies the property (Pp), if for every
(y, t)€singsupp(¢) with ¢<T the inequality (4.2) holds for some (xo, o)
¢supp (f). Since u(¢, y)=0 for £=0, the property (Pp) is fulfilled for T=0.
Therefore Theorem 2 follows from

Lemma 4.1. If the property (Pr) holds for T<T, there exists £>0,
such that (Py) holds for T<T,+e.

Proof. The singularities of the distribution (¢, x) propagate along the
bicharacteristic of the operator d,—ZX7_; A(x)dx, in the region Q<R. Let y(s)
=(4(s), x(5), ©(s), &(s)), 0=s=o be the bicharacteristic, connected with the symbol
t—1,(x, &). Then we have

X(0)—x(0) |= [ |94 T4 (x(5). E(s) | ds=co=c| o)~ HO) .

This observation shows that it is sufficient to study the singularities of u(#, x)
only near 0QxR.
Let v,€0Q be a fixed point with

(4.3) | Yo—x|>c Ty —t| for (x, £)€supp(f).

Consider the function @(¢, x, T, §)= —c(To—1)—8 +((x —y,)*+8%)"2 where §>0.
Making a change of variables, we can assume that the boundary 0Q is given
locally by x,=0. Thus, we are in situation of Theorem 1. The assumptions of
Theorem 1 follow from the hypotheses described above. We shall verify only
the condition WF'(u)N{e<0}) W=®. When (x, £)¢sing supp («) 1 {¢<0}, from
the inequality ¢<0 we get

(4.4) | yo—x <e(To—1)
and t<T,. For t<T, we can apply the property (Pr) and obtain
(4.5) Ix—;l:;clt—’il for (x, £)¢supp (f).

But the inequalities (4.4) and (4.5) contradict (4.3). Thus, we can apply Theo~
rem 1 and conclude that u(¢, x) is smooth near (y, T,). Since y,€0Q varies
in a compact set, we can find e>0 in such a manner that for (y, t) € sing
supp (1) {0QxR} and {<T,+e the inequality (4.2) holds for some

(x, £)€supp (f)-
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