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ON THE LOCAL PROPERTIES OF BELLMAN’S FUNCTION
FOR NONLINEAR TIME-OPTIMAL CONTROL PROBLEMS

VLADIMIR M. VEL'OV

The paper studies the minimal time as a function of the initial state of (he system for
nonlinear time-optimal control problems. It is proved that for systems with controllable
linear part this function satisfies the Hoelder condition and estimations of the order are

obtained.

1. Introduction. A number of papers have been devoted to the properties
of the minimal time as a function of the initial state of the system for time-
optimal control problems. Continuity, Lipschitzianity and differentiability of
this function are studied for various classes of control systems, cf.e. g [1—7].
The properties of the Bellman’s function provide a basis for a motivation of
the dynamic programming for time-optimal control problems. Moreover, the
local growth of this function is closely related to the sensitivity of the opti-
mal time with respect to perturbations in the initial state as well as in other
systems parameters.

The necessary conditions for Lipschitzianity of the Bellman’s function are
rather restrictive even in the linear case, since the number of inputs must be
no less than the state dimension. The paper [8] shows that for linear systems
the optimal time is a Hoelder function of the initial state. In [9;10] two-di-
mensional control systems are investigated and estimates of the Hoelder de-
gree are obtained. The paper [11] states a hypothesis that the Bellman’s func-
tion for analytic local controllable systems with bang-bang controls satisfies
the Hoelder condition. This is proved in case of symmetric systems.

In this paper we study the Bellman’s function for systems described by

the equation

where x¢R” is the state, #€¢R” is the control. The initial time /=0 is fixed
and the target is the origin in R". For given 7>0 the set of feasible con-
trols on the interval [0, 7] is

(2) U(T) {u{-)eL (0, T); u(t)yeUc=R", te(0, 7).

By 7(x,) we denote the minimal time for the initial state x, (if such exists).
The local growth of the function 7°(-) is studied on the assumption that the
system (1) has controllable linear part. It is proved that 7(-) is a Hoelder
function and estimates of the degree are obtained. As an auxiliary result
which strengthens the corresponding result in [8], we give a precise descrip-
tion of the local alteration of the attainable set for linear systems. Examples
illustrating the evaluation of the Hoelder degree for nonlinear systems are

discussed.
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LOCAL PROPERTIES OF THE BELLMAN'S FUNCTION 69

2. On the attainable set for linear systems. Consider a control system
described by the linear equation

(3) x=Ax-+Bu, x(0)=0

in the set of controls given by (2). Denote by G(7) the attainable set on the
interval [0, 7] for the system (3), i.e.

GT)={ [ exp (AT $)Bu(s)ds: u(-)€U(T)}

We shall study this set for small but positive 7. Let us assume that
Al. The set U is compact and contains the origin in its interior.
A2. The pair (A, B) is controllable, i.ec.

(4) rank [B, AB, ..., A*B]=n

for some k=n.

Denote by o the index of controllability of the pair (A, B) which is the
smallest integer £ such that (4) holds [8]. Let M;=Im A“'B and let L(M) be
the linear span of the set M—R" For a monotone non-decreasing function
o(-):(0, +2)— (0, 1] we denote

] U T)={u(-)eU(T); ut)e (T, te[0, T]}
an

Gu(T)={ [ exp(A(T—s)Buls)ds; u( - )€ Uo(T)}

Obviously Go(7T)=G(T) for o(-)=1.

Lemma 1. Let the conditions Al and A2 hold. For any unit vector
l¢ M\ L(U?PZIM,) there exist constants c¢,>0, c and €, >0 such that the
relattonc c,e”q(g) exp (Ae) € Go(e), ¢,e”0(c) exp (As)l¢G.,(e) hold for all £¢ (0, €)
Moreover, the constant ¢, does not depend on the wvector L.

Proof. Let /¢ M, Then there exists a vector @w¢R” such that /= A47—'Bw.
Define the vectors ul ..... Up_1, Upsl,-..» U, as the zero vector and
v, =cePe(e)w/2. It is proved in [8] that if ¢>0 and >0 are sufficiently small
and e¢(0, ), then there exists u(-)¢#,0o(e) such that [§(—¢y—'u(t)dt=1,

;’: I, ..., n. Hence, denoting by x(-) the corresponding solution of .(3) we
ave
(5)  x(e)— [ exp(A(e—)Bu(t)dt = -exp (ds) ¥ ) A an l), " w(tdt

0

=exp (Ae)(, 1) 57 8"0(e)/24 y(e)),

where |y,(g) | = 0(e.0(€)) Accordmg to the definition of o, there exist integers.
Syo.., Sp€{1,..., o} and unit vectors w,, ..., w,€R" such that the vectors
A—'Bw,, ..., A “'Bw are linearly independent. As above we choose con-
trols u,( - )efll.(s) such that for the corresponding solutions x/ - ) of the equ-
ation (3) the following equality holds
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(6) x,(e)=-exp (AeX (E{T)T efip(g)A%i™! Bw,+ vy (€)),
where /()| =0(e"9(e)). The vector y(e) can be represented in the form
vi®) = = B (e)A’ Bwy, i=0,..., n.
Then B’(e) -0(e"p(g)). Hence, for all sufficiently small e>0 we can choose the
numbers a,e), i=1,..., n so that limgoa,(e)=0 and
(7) T e eEae)+ S peale) = —BE). j-1,....n
(sl l) : i=1

Define the control
(®) u(-)=u(- )+ T oael ).

Since u( - )€#%qoA€), we have u( - )€Uy(e) for all sufficiently small £>0. From
(5), (6), (7) and (8) it follows that

x(e)=exp (Ae) 5, )y EPO(EN € Gale),

where x( -) is the solution of (3) resulting from u( -).
Now, let Le M,\ L(1/#?-!M,). One can find linearly independent vectors
Ly,..., l,€R" such that if r,=rank B, r,—rank [B, AB), ..., ro=rank|[B, AB,
L ABl=n, then L, ..., LEMy Loy €My ool e L,

€ M, and l, 1. For an arbitrary control u( - )€#,(e) and for the correspon-
ding traiectory x( -) we have

exp (— Ae)x(e) = "\:1 A—'B { u(s)d<+w(¢) .‘.. Be),,
where y(e)=0(e"p(e)) uniformly in «(-). Taking into account that l,
=l¢L(U%-!M,) we obtain that B,p(e)kc;e’«p(e) for an appropriate constant ¢,
and for all sufficiently small €>0. The proof is complete.

3. On the attainable set for nonlinear systems. Consider a control system
described by the equation

(9) x—=Ax+Bu+g(x, ), x(0)=0.

Denote by G&(7) the attainable set for the system (9) resulting from the set
of admissible controls %,(7). Assume that

A3. The function g is defined for | x|<R+1(R>0) and u¢ U, it is con-
tinuous and there exists a constant L such that | g(x’, u)—g(x"", u)| = L| x"— x"’
"SR+1/2, ueU.

Applym Theorem iv.3 in [12] and taking into account the compactness
of U we obtain immediately that for any closed set K—{x¢R"; | x|<R} there
exists n>0 such that if x,¢K, w(-):[—r, 1] — U is measurable, 1€(0, n),
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then the equation (9) has a unique solution x(-), | x(£)|=R, on the interval
[—1, ], which satisfies the condition x(0)= x,.

We shall use the vectors /,,..., [, which have been introduced in the
proof of Lemma 1. Let s,=r,—r;.y, i=1,..., o (r,=0).

Lemma 2. Let M be the matrix whose columns are l,, ..., L, Then
the matrices M*AM and M—'B have the form

s D
M—1AM — | .M |
So

Where D is a s, <Xr matrix.

The proof uses standard arguments and therefore it is omitted.

We shall introduce another assumption which, as it is further shown, is
essential for the obtained Bellman’s function estimate. Denote by j(i) the small-
est integer j for which i<r;,.

A4. There exist a,>0, a monotone non-decreasing function @(-): (0, a,]
—(0,1] and a function p(-):[0, a,] — (0, + =), limaop(a) =0 such that the
following condition holds: for any Q>0 there exists a number NgQ) such
that if y¢R",  y/|=Qua/O¢(a), i=1,..., n, a€¢(0 a,) and u€o(a)l, then

IM7igMy, 0))f | = CQ)u " g(a)u(a). i=1,..., n.

(We denote by [zJ'=2‘ the ith component of the vector 2).
Theorem 1. Let the assumptions Al — A4 hold. Then there exist g,>0
and c,>0 such that for every ¢(0, &) {x€R"; | x|=ce°0(e)} = GE(e).
Proof. According to Lemma 1 there exist constants ¢,>0 and €,>0
such that the inclusion

Q@) ={ £ (@B Ooeyi a=0 B=0. I (a+B)=1}<Int Gu(e)

holds for all £¢(0, g,). Define in Q(e) the multivalued function x — ¥ (e; X),
where ¥ (g, x) is the set of the controls u( -)¢ #4(e) which drive the state in
the point x according to the equation (3). Obviously ¥ (g, x)==@ for € (0, &)
and x¢ Q(e), it is a convex closed set in L0, €) (without loss of generality
we can assume that the set U is convex and, in view to Al, even that U is
a ball with center — the origin in R”). From Lemma 1 [13] we conclude that
the mapping x — ¥,(e; x) is lower semicontinuous in L0, &). Applying
the theorem of Michael [14] we obtain that there exists a continuous in L}
selection x —u(e; x; -)€¥ o(€: x), u(e, 0; - )=0. Define the mapping E=.:Q(e)
-+ R" in the following way: if x(u(-); -) is the solution of (9) resulting from
u( - ) (note that for e<n it exists), then Z(x)=x(u(e, x; -);€). We shall
Prove that the mapping Z=.-) is continuous. Let x,¢€ Q(e), limessoeXy
=x, For u,(-)=u(e; x,; -) we have limp 1o | #,( +)—u(e, x; -)1;L;=0 and the
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control u(-)—u(e, x; -) drives the system (3) to the point x.Ifx,(-)and
x(-) are the solutions of 9 resultmg from u,(-) and u(-), then by defini-
tion we have | Z.(x,)—Z.(x)| =|xu(e)—x(g)|. Denote

Dyx)~ [ Blu®)—u(t)) + g, uy(t)—glx, alt)) dt

<8t f g, wy(t) — g(x, u(ty)) dt,

where limg, 8, =0. Since lim;, .0 [7,(-)— u(-) ‘L, -0, u( -)and wu(-) are

bounded umfnrml\ in tand g is continuous, we have lims D,(x)=0 uni-
formly in x, tl’R—{—l From Theorem iv.4 in [l12] we obtain that

lime, e xu(-)—x(-) =0 which proves the continuity of Z.( -).
Obviously Gg(s) 3{_L(\') x €9Q(e)}. Let x¢€0Q(e) (by 0 we denote the bo-

undary) and let x(-) and x(-) be the solutions of (3) and (9), respectively-
resulting from the control «(-)=u(e, x; -). Making in (3) and (9) the trans,

formation y=M-1x, y—=M1x we obtain
(10) Vy=MTAMy + M—'Bu, (0)=0
(" y=M1AMy + M~ Bu+M~1g(My, u), y(0) - 0.

We shall prove that there exist constants &, and ¢>0 such that the inequa-
lities

(12) | yie) =die’/V9(e), i=1,...,n

hold for all e¢(0, €). Define the operator #,: C"0, e] — C" [0, ¢] in the fol-
lowing way :

[#F2(- XD) [df’ (Az(s)+ Bu(s) + M 'g(Mz(s), u(s))ds), i=1,..., T
[Fe2( - WO - ["f Az (s)+ Bu(s)+M'g(Mz\(s), u(s)ds), i—r +1,..., 7.,
where [2,(s)* = [Fe2( - X))t for k=1,..., r, and [zy(s)]* = [2(s)]* for k=r +]1,
..., n Let [#.2(-)t)f be already given for i=1,...,r,(p<o0)jointly with

the corresponding z,(-), ..., z,(-). Then we define
!
[#Fo2( - NOF .—.[’f Az, (5)+ Bu(s) + M~ g(Mz,(s), u(s))ds), i =r,+1,..., oo
and [2p41(s))* = [z{&s)]‘ for k=1,..., T (2o i(S))F = [Fe2( - Ns))* for k=7, + 1,
o Tpits [z,,,,(c] [z(c)l‘ for kR=rpn+1,..., n (if p+1<o).

Clearly, if yo -) is a fixed point for #,, then y () is a solution of (1)

and thus yo - )=y(-). Let us estimate the difference | #.y'(-) F.v"() .
For i=1,..., r, and for appropriate constants dy and dy we have
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Fe V') =Fe () lle=dae ||y (- )—y"()le
+e | ML M| [y (- )—y"()|c=e(d+dg) [y (- )—y"(-) L.
Applying this estimate in the definition of #. we obtain successively that for

all sufficiently small €>0, the operator #. is contractive.
Let ¢g—=(¢y, --.. g-) be a vector with positive components. Denote

voe)={2( - )=(2" - ) ..., 2"(- NEC0, €]; || 2%( - ) [|c=giae” ()}
We shall prove that the vector ¢ can be fixed so that
(13) Feygle) = wgle)

for all sufficiently small e>0. Let 1=i=r, and let 2(-)¢w,e). From A4 we
get [ [M1g(Mz(t), u(t)])'— Co(Q)o(e)n(c), where Q=max{g,,..., go}, £€[0, €]
Applving Lemma 2 we estimate

(72 MOV = [ (iQeo(e) + dso(e) + ClQo@u(e)ds
 (d, Qe+ ds + CLQN(E)ER(E),

where d, and d; are appropriate constants. Let us fix ¢,=ds;+1 and let

€, £(¢s . .-+ go) be so small that CyQ)u(e)+ed,Q=1 for £€(0,&,). Thus the
function z,(-) from the definition of #.2(-) belongs to yy(€). Assume that

the numbers ¢,,. .., g, and €,=€4(@p+1, - .-, go) are already fixed so that

25 - )€ ygle) for £€(0, g,) and for arbitrary gpi1,-.., go. In view of Lemma 2
and A4 we obtain that for r,+1=i=rps:

Fe2(- XOF | = {' (dsq,£70(e)+ d-Qer+'o(e) + C Q)e o(e)u(e))ds
“(deqp+d-Qe + CQ)n(e))e?+1o(e).

Let us fix ¢, .1 =deg,+ | and €511 =8p41(¢p+2...,¢,) SO that &;Qe+CQ)n(e)<1
for €€(0, €5+1). Thus 2,.1( - )€w(e) for any selection of positive numbers g, .2,
vev. Go if only €€(0, ,11) and 2( - )€we(e). Keeping in mind that ze(-)
—~ F.2(-) we obtain the inclusion (13).

From the Banach fixed point theorem and from the uniqueness of the so-
lution of (9) it follows that y(-)€wy,(e) for all sufficiently small €>0, and
hence the estimate (12) holds.

We shall estimate the components of the solution y(-) of (10). The vec-
tor x¢€0€Q(e) can be represented in the form

(14) - . (a,—B)ee/O9(e), =M i§| (a,—B)c, &/ Do(e);,

| 4=

i

where @, -0, B,=0, £ (a,+B)=1, ¢=M"Y=(0,..., 1,...,0) with 1 in
ith place. Since x ¢ 0Q(e), there exists i, such that |a,—B;|=1/n. From (14)
we get

(15) | yioE) | =| [M7x]e| = e/oy(e).
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Moreover, according to the proof of Lemma 1, there exists a constant dg
such that

(16) | YU(E) | =d/Oe(2),
for all sufficiently small £>0. Denote E=M—"'AM, F=M—'B. Then

WO= [ exp(E—s)Fus)ds+ [ exp(Et—s)M-1g(My(s), uts)ids
—y(t)+ ”jt' exp (E(t—s))M—'g(My(s), u(s))ds.

Hence, applying A4 we obtain that for an appropriate constant d,
| V() —y(t) =dote(t)u(t).
Taking into account Lemma 2, (12) and (16) we get that for r,+-1<i<r,

VD) - i) |=dy /'}. YA —yAt) |+ di,£20(t) + Celdyto()n(t)

=1

= (dndmrl + Cg(ds))t‘p(t)u(t) +d, 1t2¢(t).
Hence for p,(f)-=max{p(¢), £} we have

V() yi(t) = dote(Bm(),  te(0, &,
e—sufficiently small. Continuing these arguments we obtain that there exist
constants 4 and £¢>0 and a function &( -), lims:0&(f)=0, such that

(17) | Vi) —yi(t) | =dOR(t)E(E)

for all £¢[0, €]. Moreover, the constants d and € can be chosen independently
of x. From (15) and (17) we conclude that | yi(g)|=c,e/o(g)/2n for all suffi-
ciently small £>>0. Hence,

M7x(e) | = (M7 x(e))| =] yidE) | = cie/e(e) 2n.

Consequently, there exists ¢,>0 such that x(€) | = ¢ 8/ (e) = c,e°0(c). More-
over, ¢, can be chosen independently of x. Thus for each x¢dQ(¢) and
€€(0, &) (g, — sufficiently small) we have

(18) | Zd(x) | =CoE"0(E)-

From A4 it follows that g(0,0)=0, thus Z,(0)=0, which combined with the
continuity of Z(-) and (18) gives {x€R"; |x[=c.e°p(e)}— G#(¢). The proof is

complete.
4. The Bellman’s function for nonlinear systems. Consider a control system

described by the equation
(19) x=f(x, u),

x€R" u¢R’, in the set #(T) of feasible controls on [0, 7], defined by (2).
Further we assume



LOCAL PROPERTIES OF THE BELLMAN'S FUNCTION 75

A5. The function f is continuously differentiable for |x|<R+1 and «
from a neighbourhood of U; (0, 0)=0; the matrices A=f,(0,0) and B=f,0, 0)
satisfy the condition A2 f -, -) and f,(-, -) are Hoelder functions in degree
1/m in a neighbourhood of (0, 0).

Let K={x¢R"; | x|<R+1} be a closed set. Denote by D,(7) the set of
all initial points x such that there exists a control «(-)¢#%(T) so that the
equation (19) has a solution x(-) on [0, 7] x(0)=x, x(T)=0 and x(f)¢K for
all £¢[0, 7]. Let D= U r=0 D,(T). Clearly the function Tx(x)=inf {7 ; x€Dx(T)}
Is defined over D,.

The equation (19) can be rewritten in the form of (9) with

(20) g(x, u)=f(x, u)—f (0, 0)x—f(0, O)u.

Lemma 3. Let the conditions Al and A5 hold. Then for the function
g in (20) the condition A4 is fulfilled with

2D o(a)=a’, s>m(c—1).
Proof. For an appropriate 6=0(x, 2)¢[0, 1] we have

8(x, u)=(f0x, 0u)—f (0, 0))x +(fu0x, 0u)—f,(0, 0))u.

Let | yi|<Qa/¢(a) and u€o(a)l/. Then for x=My we have |x|=d;Quae(a)
and
M= @My, 0)f| <dy| gx, u) |=dyH( | 0x |+ 0u )'m(| x |+ | u)

=dy(d,Que(a)+ ¢(@)"™(d,Qae(a) + ¢(a))
= dy(Q+ 1)'™(¢(a))"™(Q + o(a) = dy(Q + 1)+ Va0 lo(a)u(a),

i. . the condition A4 holds for Cy(Q)=d(Q+ 1)m+!m Here H is the Hoel-
der constant, d,, d,, dy and d, are appropriate constants, lima,ou(a)=0. The
proof is complete.

Let us assume additionaly that

A6. The function f is defined in R"XR”. For any compact set McR" and
a number 7 >0 there exists a compact set K<R" such that for each u(-)
€%(T) and x,€ M the solution of (19) with initial condition x, at £=0 exists
on [0, 7] and belongs to K.

The second part of this condition is fulfilled for instance if | f(x, )|
<eo(l1+x), x€¢R™ If A6 holds, then denote ID(T)=Dgu(T) and T(x)= Tpn(x)
(fof X € D= U T>UD(T)).

Theorem 2. Let the conditions Al and A5 hold and K’ and K" be
closed subsets such that K'cIntK"<{x; |x|<R+1}. Then for any T>0
there exist constants ¢ and 8>0 such that if x' €Dy, Tx(xX')<T and
| x'—x'" | <3, then x"' € Dk and

(22) TrAx")— TrA(x)Sv=Nc | x'—x'" |),

where y(u)—a°e(a). Here ¢(-) is an arbitrary fanction such that the condi-
tion A4 holds (for instance ¢(a)=am™). If, additionally, f satisfies the condi-
tion A6, then for any compact set McR"™ and T>O0 there exists a constant
¢ such that

(23) [ T(x")—T(x") [y~ e | x'—x" )

for every x', x''¢€ Usio, nD(s)N M.,
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We omit the proof which uses Theorem 1 and some additional standard
arguments. The last result has the following meaning: the Bellman’s function
(the minimal time as a function of the initial state) satisfies the Hoelder con-
dition in degree no less than 1/o(m+1). The examples given below show that
choosing a function ¢( -) satisfying A4 for the concrete case one could ob-
tain a better degree.

5. Examples. Let us consider the system

Xy = Xo+ X+ X, Xo+aud,
Xy = X3+ X7,
— .3
X3 = ~X4+.12,
X, =1,

we[—1, 1]. Applying Theorem 2 we obtain the estimate ¢| x'—x’" '8 in the
right-hand side of (22). Let us check the condition A4. The function ¢(-) is
to be chosen such that if

(24) | X1 = QF0(t), |xy | = QF(t), | x3 =Q%(2). | x, = Qto(t),
hen

hy | X2+ x x5+ au® < C(Q)Pe(H)n( 1),

hy—= x7 | 2C(Q)*p(t)u(¢),

ey ey = C(Q)tp()n(?).

Let a =0, p>3. Then the above inequalities hold (in view of (24)) for o(-)=1.
The corresponling estimate in(22) is C x'—x” |V If p-~3 we can take
o(t) =1°, where s<(3 -p)(p—1). For instance, if p—2, then we have the esti-
mate ¢! x’—x"|* for k<1/5.

Let a -1. In this case the degree’s estimate 1/4 does not hold even in
case p>3. The condition A4 is fulfilled for ¢(¢)=¢#, s>>3 which gives the
estimate ¢ | x’-x"" * in (22) for 2<1/7.

Now, consider the system

X, =Sin xo+ 2,
Xg == U COS X, —U?,
X3= X+ Xq—U,

where «¢[--1,1]. The estimate (23) (the condition A6 holds for this system)
with @(-) given by (21) becomes

(25) | T(x")—T(x") |<c|x’"—x"|K, k<1/5.

Checking directly the condition A4 one can easily get that o(f)=¢ s>1 is
an appropriate function. Hence we obtain the degree k< 1/4 in (25).
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