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COMONOTONE APPROXIMATION OF | x|
BY RATIONAL FUNCTIONS

G. L. ILIEV, U. OPITZ

1. During the last 15 years a number of papers appeared which investigate
the approximation of functions with special properties (monotonicity, convexi-
ty,...) by a smaller class of functions which have the same properties (see
[1, 2, 3, 4, 5]). Such approximations were called approximations with constra-
ints. Approximations with constraints were studied in different metrics — uni-
form, L,— metric, Hausdorff metric. As systems of approximation mainly poly-
nomial and spline functions were considered. On the other hand in the last 20
years rapid progress was made in the field of rational approximation. The
starting point was the famous result of D. Newman [6], which states that the
function | x| can be approximated by rational functions in [—1,1] with the

order O(e™ " ). (Here and further on we shall denote by ¢,(#), i—1, ..., some
positive constants which will depend on the parameters listed between the
brackets while ¢; will denote an absolute constant.) In the present paper we
link these two directions of research as we prove that | x| can be approxima-
ted by a rational function monotone decreasing in [—1,0] and monotone in-
creasing in [0,1] retaining the error of approximation found in [6]. After
Newman's work several classes of functions were discovered where using the
result of Newman it could be shown that rational approximation is better
than polynomial approximation. In all of these problems the questions of co-
monotone rational approximation remained an open problem.
Let us consider the function

0 for x¢[—10]
X, =

x for x¢[0,1].

It is natural to ask for the approximation of the function x, by rational func-
tions on [—1,1] with positive first derivative. This problem (without the ad-
ditional condition for the first derivative) is considered in [7]. We show in the

present paper that the order of approximation is again O(e” ") as in the
theorem of Newman [6]. This result is equivalent to the fact that the order
of the Hausdorff monotone rational approximation of the function

0, x¢[—1,0]

(1 o(x)={
1, x€[0,1]

is itself O(e " ).
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In 1975 Vyaceslavov [7] found by a very complicated constructive

proof that the constant ¢, in Newman’s estimate O(e”“") is equal to n. In
the present paper we show that the same constant even holds for comonotone
approximation of x| by rational functions.

The results of this paper were announced in [8].

2. Let R, be the set of all real rational functions of order n:

Ry:—{rx): r(x)“z;g;, p.(X)=ai +a x+---+a‘ x",

i=1,2 aj¢R, k=0,..., n},

Theorem 1. For every large enough integer n=n, there is r¢ R, such that

(2) x—r(x)}=3e™" for x¢[—1.1]
(3) r(x) is an even function
(4) r'(x)=0 for x¢[0,1).

We shall prove that (2), (3), (4) are satisfied for the following rational
function r(x) introduced by Newman [6]:

r(x)=x BI_A=D) 1’(X)="1—1‘ (x-+&*%), E=exp (—1/{n)
plo)+p(—x)° k=0 '
The following two lemmas were proved in [6] for every integer n>4:
- AT —

Lemma A. II ——7$e
i=1 14§

Lemma B. l ':(t)x)[_ﬂe“"' Jor 1 sx=s1.
We also need the next two results.

Lemma 1. x 7% =n for 0<x=1.

| plx)
Proof.
( x) n—1 x n—1 1 B
f = J =X —F" —_—n.
l, (.r) ?() /r‘() (x+§ )‘ x[ )l J=0 x+&’ Jj=0 l+§/lx =R
J*=k »
Lemma 2. Let n>4. Then x! ;x))fsn’e—*: for Elsxsl.
Proof.
n—1
n (&/-x
5 T THN bl i PP
) * 2GR !_x Aud 5P = s

n &+x
J=0
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Let &i+l—x<&, j=0,1,..., n—1. Let first 0O=<k<i. Then:

6) Ay | EmO @ OE . @GN E D). G

n—1
ﬂ(&’+x)
]__

_x  (E—x). . (B =) (R —x) . (B—x) | (x—EY. L (v %Y
TXHER (R G (BE T X)L (BT X) (B L (BT
o E—E . (ERTIEi) @RFIGHY) L (BEEE) (18 L (1B
=T @I e ) (BRI E ) L (BT R (THECT) L (1Y)

(1—&i+Y. .. (1—Ei—k+2)(1—&ik) ... (1—F) (1=&i+Y.. . (1—&1)

(L+EFY) (L8R (1+8R) . (14+8)  (T4E&F) .. (1487

| 4gi—k+1 o1/
= — I .
1—&i—kt1 oy 148/

But {—4>0. Then

. 1+Ei—k+1 1
(7) i—t—,t—kﬂfl—&b”

and so from Lemma A, (6) and (7) it follows:

(8) Ak«;_ne_"f;.
Let | +i<k=n -1.

(9) A (B —x). . (Bi—x) (=it ... (x—BKY) (x—BkFY) .. (x—8nTh)
kT xrER (B9 x). .. (Bi+x)  (CFEFY) ... (xFEE) (X EEF) . (x+EnY)

_ =gy, (1) (=&, (18 (1—8k+Y) ... (1-81)

(1+§l .. (l+§) (l+§z+\) (l FER—1) (l+§k+l) (i:—iT-‘)—
1+&k " l—a 1 _n

- —_— <. <ne "
=& o 14/ o1-g =
Let k=i
(10) T (- RN (t? B Lt PR €
ETEx (B9+0). . (G x) (e +EFY).L L (e EY)
- (1—§k+l) (l_a.',) (l—&""l) (l_E.n—l)
TR (148 (T+&+D). .. (1+& )
J
< 1+& ﬁ 1-§ <ne™
1—& =1 14+¥
Let k=i+1
(1 l’ A= x (E0—x)...(Ei—x) (x—E&i+2) .. (x—&n 1)

TXFERT (B x). .. (Bi+x)  (x+EF) . (x+Er )
_(1=gi+)...(1-§)  (1—-§&*?)...(1-g)
*(1+a~1)-..u+a) (TFEF. . (T+8)

148" 7 1-&.’ <DV

< ———

1—8" ;-1 1+§’“
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From (5), (8), (9), (10) and (11) it follows that xi”""" [gnae“""‘_ . which

px)
completes the proof of the lemma.
Proof of Theorem 1. We shall prove that assertions (2), (3) and (4)
are true for the rational function constructed by Newman in [6]:

. P—p(—) _ k) E —1Jn
r(x)=x Bl p)= 1L (x+8%), g=exp( INR), TER,.

Using Lemmas A and B it was proved in [6] that |]x|—r(x)i§3e_""‘—
for x¢[—1.,1]. Since it is obvious that r(x) is an even function we only have
to prove (4). First let x¢[0, &"'] and let us define:

(12) g0 =Rt

Consider the equation

(13) g(x)=1,

which is equivalent to 2p(—x)=0.

We find that the roots of (13) are x, =&, i=0, ..., n—1. But since g(x) is
an (c))dd function, the roots of the equation g(x)=—1 are the points x_;=—&,
i=0,..., n—1.

Then from the Theorem of Rolle ¢’(x) has at least 2n—2 zeroes for

xe[—1, —gjulg™, 1]
(14)  Let us suppose that ¢(x) is not a monotone increasing function for
x€ [0, &™1]. Since ¢(0)=0 ¢’(x) then must have one more zero in (0, ")
which means at least two more zeroes in (—&"%, &"'). Then from (14) it
follows that ¢’(x) has =2n zeroes for x¢ [—1, 1]. But

oy PCI—p(—0] 1 P9+ P p(x) —A= DN P(2) + p(—F
(15 ¢')= (AP~

0w
(PO+A—OF

and as p(x)+ p(—x)=30 for all x¢R, then there must exist 2z points n,¢ [—1,1],
i=1,...,2n for which Q(n;)=0. But from (15) it is clear that Q is an alge-
braic polynomial of degree less than 2n. Therefore from (14) it follows that
Q(x)=0, ¢’(x)=0, which is false.

Therefore

g(x) is an odd rational function
g(&)=1 for i=0,1,...,n—1
g(x) is a monotone increasing function for x¢ [—&", £"1]
0=¢g(x)=1 for x¢ [0, £"1].
Then for x¢ [0, &" ]
(17) r'(x)=gq(x)+q'(x)x=0.
On the other hand, for arbitrary x

(16)
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e
[

_plx)—p(—x)
rix) = plx)+p(—x)

[P ) +p (=) ][ P +p(—0) =[P () =p(—x)] [ Plx)—p(—x)]
[ ple)+p(—x]?

_ PP =pE—x) +2x] p'(—x)p(x)+p'(x) p( —x)]
[pley+p(—x)

[ Px) )]{ [m—w] Lo PR 5 P _p(—X)}
—X

+ X

plx+p p(x) P 5T e T p
~ | __A5 2y =22 P=x) | o | P | | p=x)| }
[P(4)+p(—x)] { 1 [ plx) ’ plx) | 2x | plx) ! plx) |

Now, if &' “x =1 then from Lemma B, Lemma 1 and Lemma 2 we have
for n=>n,

. px) L R I WP R W B
(18) r'(x) "[—ptr)-fp(—x)] {l e 2n2e 2ne } -0.

From (17) and (18) it follows that r’(x)=0 for O="x<=1, which proves
Theorem 1.

3. Theorem 2. For every integer n>n, there is s¢R, such that
[1-s(x) <e " for x¢le ™", 1];

S(x) is an odd function, —1-<s(x)=1 for x¢[—1,1];

s(x) is a monolone increasing function for x¢ [—1, 1].

Proof. Consider

, PO —p(—x) 2 B, E—exp (1’
9() Py M= (x+8"), E=exp (—1/m)
where m —=cy. \‘r; -

Similarly as in the paper of D. Newman [6] we see that 1 -g(x)|<3e™
for x¢ [exp (— ~(n—1)/m), 1] and n=-n,.

By the same method we used for the proof of (16) for the function de-
fined by (12), it is easy to verify that ¢ is an odd function which must be
monotone increasing on [0, exp (— (7 —1)/m)].

We have

2Ap’ (—x) plx)+p'(x) p(— %)) _ 2 LxXLp (= x) p()+p'(x) p(—x)] |

9= 500 +p = [P0+ p(—xP

Then, following the same way like in the proof of Theorem 1 we obtain for
x¢ [exp(—(n—1)/m), 1] and large n

(q'(x)| = 2(m2+ 1) n exp (n/m —m)<3c2n® exp (( ja—cg)\/'ii) .

Now, for c3>1 we see that 1/c;—cy<0. Hence for any a,¢ (0,1), B>1 we
have

(19) g(x) e VN for x € [exp (—1/(Bey)) . 1]
and n large enough,
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Let s(x)z&(x)-i—e_“‘(”’_”“)"r'i. x. Then s(x) is an odd rational function of or-
der n that is monotone increasing on [—1,i] by (19) and satisfies

1—s(x) ‘-z;Be_”‘F + e«n.(t,-—l’t,wn- = e—u(c,—l,'c,)vn_

for x¢ [exp (—1/(Bcs) yn), 1] where a<a, and n>>n,. Finally we choose a¢(0,1)
and B>1 arbitrarily so that a(cz—1/c3)=1/(Bc3)= :¢, and ¢, is large. The above

equality is equivalent to ¢2~\/1+———>1 and cy= ol - Rrown the res-

\Bz+

trictions on a and B we see that necessarily c2<l,,\/2. This construction fi-
nishes the proof of Theorem 2.

Theorem 3. For every pair of integers n>ny, k>0, there are a ratio-
nal function s,¢R, and a constant c,(R) such that

| x* —sy(x) | =exp [—cy(k).n] for xe€[—11],
s (x)=0 for xe[—1,1]

Proof. In view of the detailed discussion in the foregoing proofs of
Theorems 1 and 2 we shall be rather short here. Let us first consider the
case k=2 where we shall use the result from Theorem 1. The approximation
of x, requires an extra construction via the result of Theorem 2.

Let r(x)€R,., be the rational approximant to |x| on [—1,1] defined in
Theorem 1. Then for £=2 set

R—1 X X —g
Sa(X): - X l’( )+ ] eV

where c¢;(k) is a constant to be determmed later Then for x>0 we have by
virtue of Theorem 1

|t —Sy(xX) | 5 | X8| | x—r(x) |+ €TV <1 5V | gmeiNE
and similarly for x<0 since |x+r(x)|=/|x|—r(x)|
| S | =g |4 || x4 () [+ N <15 V7 4 g,
Thus | x* — s,(x)!>’_2.5e"“"""_ for all x¢ [—1,1]. This proves the first assertion
of the theorem for c,(k)<cz(k). Let us investigate now the sign of s, (x).s, is
a combination of functions which are all non negative and monotone increa-

sing for x =0 (remember r(0)=0), hence s (x)=0 for x¢ [0,1}. Now consider
x¢ [—1,0), We have

Sy(x) = ; {(k— 1)t =2 r(x)+ X] + XA [P (x) + 1] }+ N

_ e~r.(mn’~%{(k_1)| |x!|—r(x)| + | x| | 1—=r(—x)]|}

because r is an even function and k=2.
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Here || x| ~r(x)|_>i3e""7. so we have only to estimate |1—r'(x)| for
x€[0,1]. 1f xe[g"™ 1, 1] where E=exp(—1/Jn) then we find by mere repeti-
tion of the arguments in the proof o Theorem 1 after formula (17)

10| 1- SER -a Aingten|
(:"2{ 1 P(x,)’(;p:)—x) l A ‘ p(x)TZ(—X) 2 i xp;(;))c)—+x % _,;(’(_x—))') ]
s a1 5w = 18 52 )
L p(—x) p(x)
SQ{ e‘/"—l—l +[ 1_:—47]2{"2'8—‘;.{-”8—‘"_ }}

<3[m+n+1]c ™ if n=n,.
On the other hand for x¢[0, £&"'] we have p(x)=p(—x)—-0 and so

PR | | A= oy P

Il Plx)+p(x) ‘ﬁl'i plx) i'\'l’x!p(x)i"' ’
" n—1 n—1 J_ n—I1

’p( x)|< e I
p(x)

1™ k=0 H_Ef 5;2 E/+x k=0 1+§5
X

Hence |1 —r(x)|<1+2[n+n]<5n for x¢[0, &"']. From the above estimates
we learn that for all x¢ [0,1] and n=n,

vn

x.|1=r(x)| =3[n*+n+1].e"
and so finally

i) =e N L 3(k—1)e ™" 4 3[m 1) ) -0

for cz(k) sufficiently small and n=n,.
We turn now to the case £=1. Let s(x) be the rational approximant to
the function sign (x) constructed in Theorem 2. We define

—edn ) SCORL el
2 o

si(x)=[x+e
where ¢, denotes the constant introduced in Theorem 2 and c¢g<c, is another
constant which will be determined later. In all subsequent computations we
shall make thorough use of the proof of Theorem 2. Let us first estimate
I x,—s8,(x)| for x¢ [—1,1].
Since s(0)=0 and s'(x)=0 we have from Theorem 2 for x¢ [0,1]

'1—s(x)|=max(|1—s(0)], |1 —s(1)[)=max (l,e " )=1,

—t,\ll—

[T4s(x)|=1+s(l)=2+e
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—cn

and so by distinction between the cases x¢ [0, e ] and xe[e_""' 1]

—ewn

x.|l1—s(x)|<e for all x¢ [0,1].

From these inequalities we find

X— 31(x)|-v2{x Il—s(x)|+e—m"—]1+s(‘x)|}+e—mn—

L3
2

=

(e 2+ e} 4 oo™ <3p—n for x¢[01],

—eNn

s =g { 1% | 1+ 5 )+ [ 145(x) | e~

1 —ewn n
=5 {—x-|1=s(—x) |+ |1—s(—x)|}+ e
<o {e™V L ey eV <2679 for x€ [—10].

This establishes the first assertion of Theorem 3 for ¢,=c(1)<c,.
Now we turn to show that s(x)=0 on [—1,1]:

250 =S () + 1+ [x+e V" | - /(x)+ 27" .
As by construction of the function s

1 -
—ay(cs— —) Vn g
—1 —(n— —(n—1)/m —¢,
s(—e "M —g(—e V™) e oy iy -

and s'(x)=0 we have from e " = g—"—D/m g ¢
25(x)=5(—e TV )4 1 4 [—eT T WA s(x) 4 26N
> e 1279 20 for xe[—e "V, ).
On the other hand, for x¢[—1, —e " "™ we find
25/(x) =26 —| 14+5(X)|—| x+ €~ | .| s'(x) |
=2¢~4 |1 +lt7(x)+e"°"""""""_ = €| ) el e
-m,. 1+ q(x)l _a.(c.—l/c.n‘n— ol q—,(x)'_ e-«.(c.—l/c.)v‘n_
=2 oW _ g mle—lieVn ] —3e~™—3c2n o (crlianNn
so that from e ™= e W' 3¢~ <o~ 3 gl ONT o g finally

si(x)=e V" — 24" >0 for n=n,

if only ¢, is small enough compared to c¢,. This ends the proof of Theorem 3.
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By some modifications in the proof of Theorem 2 it should be possible
to prove the following assertion:

For every pair of integers n -n,, k>0 there is s,¢R, and a constant
c;(R) such that

X% —sy(x)|=exp [—ci(k)n| for xe[—1,1]

si(x)=0  for i=1,..., & xe[—11]
4. Let
R, : ={r(x):reR, r'(x)<0 for x¢[—10], 7(x)=0 for x¢ [0,1]},
R|xl, [-11)= inf ||| x| —rx)|:= inf max |x|—nx)]|
rER, R, xf[—11]

R, (lx|, [=L1])= inf‘ [[Txl—r(x)!.
TR,

n

In [7] Vyaceslavov proves the following result

(20) exp (—mn+1=R,(| x|, [-1,1])=cgexp (—xyn—1).

The estimate from below was obtained by Bulanov and is also stated in
[7). Vyaceslavov reached the upper estimate by direct construction of a ratio-
nal function. Our purpose is to prove that this rational function also follows

the monotonicity of | x| in [-11]:

Theorem 4. exp(—mn+ )=Ri(|x, [—1, 1])<=csexp( — m/n—1).
To prove Theorem 4 we have to take a thorough look at the construc-
tion of Vyaceslavov. As in the fundamental paper of Newman [6]:

‘ . p)—p(—x)
21 rx)=x Bt

where p is a polynomial of degree n:
n—1
(22) p()= T (x+8).
The zeroes — &, are chosen differently from Newman [6] (In [6] we
had & —=exp(—j\n):
(23) &= exp[—(Agt - +A,—2rA,)],
where
r(1—1/e)/(2yn), £=0,1,..., 2r—1,
(24) A= n(1—1/e)/(2yn), (\+ir=t<Q2+ir, i=1,..., m -2,
r/(2yn—1t), t—mr,..., n—1,
and
(25) m=[r"Inyn+1], r=[2yn+1]. n=n,

Here n, is a fixed integer chosen large enough. From these scttings the follo-
wing properties are clear:
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A,>0; A, is monotone increasing in £;
(26) E;+1/&y=exp(—Aj;,) is monotone decreasing in j;
§0>E.I>"'>§2r—l:]>§2’>"'>§u-—l'

Let us define

@7 )= pim =

It is easy to see that
s(0)=0; s(£&)==+1, j=0,..., n—1;
s(x) is an odd function in R,.

We shall consider only the interval (0, 1]. Since p(x)>0 for x¢ [0, 1]
from (21) and (27) we have like in Theorem 1:

(29) r (x) =S(x)+xs"(x)
L LB = RS Y L B B

(28)

l"p(—" P plx)  px)  plx)
mx)
Moreover by (22):
, n—1 na—1 —1 1
(30) r (x)— r n (x+§k)— ﬁt/ (x+§,) p(x )=0x+=,
n:;
n—1
n(_§1+§h) when x=§p
n—1 n—1 k=0
B1) p(—x)= I N (—x+8&)= "
J=0 :7_(; (_ x) uz—l __l___ h
P s 7= when x3E&,.
From (22), (29), (30) and (31) we obtain:
—1
T~ &+&)
hk=0
r(0)=0 and r'(&)=1+ 2§ =——
I (& +8p)
k=0
(32)
o' —Ri+la
=1+ 1 515 >0
Aot

and for x€ (0, 1), x+&p—yces Egp1s

o ! P a0 M) (1 '
(33) r'(x) H-,',('_x)l;{l"[,,(ﬁ *+2x Px) [ x+t, 23 —x+& )}
o)

7 Cn. Cepanxa, xn. 1
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98
We shall now exploit formulas (29) and (33) to prove Theorem 4. We

shall distinguish several cases

Case 1. x¢(0, &,)) ln‘this case r'(x)>0 and this can be proved exact-
ly like in Theorem 1 after assumption (14) )

the following inequality

Vyaceslavov notes
e
3. - N
152 o it < Vo | oca<x<s.
1+l/ J
A direct consequence of (34) is the estimate ([7], Lemma 3)
LT
lp(=x)| 3 n ]
(35) ) = G < e X € (Err1r &)
1+ §/ 228
&
show r'(x)>0 we have

From (29) and (33) it is clear that in order to
x) p(x) _(—r)]

only to verify
plx) px) T plx)

1[0t 0x 27
(36)
{20 4 2 2091 " (et >0
’(.X.‘) [)(X) I x+&
. q), q=[n— - G 2p). This case co-

Case 2. x€(&4y &), te{2r—1,.
vers almost all intervals except those ~ln3q which are nearest to the point O

We prove the following three inequalities
:P(-—\,’)l gn_(1~;)/3' xEléq—'rl' l'.

(37) s
e>0 arbitrary, n —-n¢)
[p(x) .
(38) -IW -n, X(IO, 1
x AR pvimom ¢ (B &) with
(39) P PR
te{2r—1,..., g}, £€>0 arbitrary, n >ny(e).
As a consequence we shall have the desired inequality: For n=>n,
A—x) p'(x)  p(—x)
o ]

B |,’( x)f 2
i —P+2x| p(x)  plx)
A= e o =X PR 5 [P(=X) |
=15 P =250 e %
l n ~(8-—-2)/n 2” (4—n—e)'n 2” —(4—n —u)/u>o.
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This will prove Case 2.
Proof of (37). Note the inequality

1 x+1/2 / 1 / 1 1
(40) —= [ ——a’y 2(\x+2—— B Y —)» X>5-

VE xSz Wy

Then by definitions (23), (24) and the mean value theorem we have for an
arbitrary pair of indices 7, j, 0=Si<j<=g+1:

JE. = —(A;.,+ - A= — (==t -
&I > exp[ ( i+1 -+ /)] e‘p[ ( (’+”+ +\rn—_7—),
=exp[—n(yn— 5 —i—\n— k- j=exp(—r—I=t )
AOE1 W
2
= e (—§ -0
where
L i 1
(41) 0: =exp(——5 —57—)—1, when n—co.
Therefore for x ¢ (§,4,, &) (observe ::_i =e ¥ x=0)
t - n—1 l—% ¢ l—% g+1 l_'&
=9 _n_ %" =n y n é’
P(X) j=01+i J=t+1 l+ﬁ H1+ §‘+l J=t+1 1+ U

t 1@t it g™t 1L, _ofimet—e | ¢

= |
j=01 4ot

jet+l 146 =146 =m0 140

f+1 __opf g+1—t _ t+1 +1—¢
e ™M ¢ ™ =exp[—2( 20/ + £ o))
junl Jj=1

J=1 j=1

oo = 3 2741
06" +o 04 )<exp(—2 o—ee

-exp(—2. )

because f¢{2r—1,..., q}.
Now 0-—1 for n-+c0, but 0¥+ <
and n - nge)

s : e s
L————”(m_:)) sexp[—(2—7) =y lsexp[—

f—

20yn
Inn

— n—(4-—|)/x -

1
| —e—x

Here we have used R for x>0.
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Proof of (38). By (30) we have

LP'(«") | B = n;;l 1 n—1 1

X =
px) _ j—0X+&; j—o 1+§jlx

X —=n.

Proof of (39). From (31) we have much as in the proof of (37) with
X€ (810 &)t

n—1
IT(—x+&)
FACE IR = S Sl e 2 1Y
x — S e o0 V14Ejlx 4o x+
) L0 T (v +-8p) /=0 == Sk
k=0
(42)
:n-z—l n—1 —x+ Epl < 1. max ‘lﬁ‘:x+€k,‘k.
=0 k=0 *+& 0 j=n1 k=0 *+E&
ki k)
a) For j>¢g+1 we have as in (37)
T —x+E
-5k —(4-¢e)/n
k—0 X+ "
iy
b) For t+1=j—¢g+1 we have

ll+‘_§-—x+-§_k;‘: ! Ep—x J—1 x—& g+1 &

k=0 *H& k:0€k+xk=!+l *+8s r=ji1 ¥ +&

kit
e 15k Sk

—— ; h. 1 1—
< l’—l ' Sk i & qﬁl __&L_

k=»01+§£+l*_k=t+l 145 kejr1y 4 Sk
S & &
B X Al ~ Gl o <A T o
om0 1407 IR ekt k—ji1 14057
¢ ltok q+ 11—t l__ek
1o1+0% e 1408

f}-ll_o‘ J-
pe1 1405

W :L.

{1 J—1—¢ q+1-—t
\expl—Z(EIO‘-k ‘}.'.' 0% 4 0%

A==/ 1—t
00t g_¢/ 0/+1 -1 __gq+2—t
expl A5+ [
_att2
<exp(—2 %—)- o AL

since ¢t -2r— 1.
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¢) Similarly, for 0=<j<¢ we obtain

1_§t_+_1 l—iﬂ 1_.&
g+ | —x+Ep| /= Er ! Ek Lha 3
mve =0 e O e :
k| k=0 |4 ct+1 k=j+1 |4 tt1 k=t+11+5L
k*/ Ek §k 3
t+1 _gkt=/ |_gk a+1—t 1—9*'
= n 1 Y ] PR
T h=t+2—j l+9* k=1 140 z=1 140
o 02T gt g_gtti—s g_gi+i—t
éexP["Z( 1—0 1—0 + 1—0 )]~

Here, for fixed £¢{2r,..., g} the exponent is striétly increasing in j ¢ {0,
, t}, hence we get with j=¢:

q+1

—x+8el  n 1 s e c
ex 1
£=0 t+§[ p(— 1—9 )
k+/
et
—<exp(— 2——)\n—<‘—°)'

Putting together estimates a), b), c) and (42) we arrive at (39):

l ) —R—e)/R :
X Lp(x;—'Sn 4 ) X € (Ep1> &) with

te{2r—1,..., q}, €>0, n=nye).
Case 3. x€(&uy &) tefg+l,..... n—2} ¢ ':["‘“3?_1“’ n}, and
p(—x)>0. Then from (22) we have that t<n—3 and (36) is equivalent to

—X)

—x+€ >4 plx)

_p(x) ‘
2 2x2(x+¢l

From the well-known inequality

-

-1 -1

(43) M(+y)=1+ Iy, ¥%=0,
k=0 k=0

we conclude that

(44) 2D _ o atx o+t

P=%) g0 r— X gts1 X—Gp

¢ 2x n—1 28
- '.1<'+-=-:>.-,f1.“+x—-e:>

n—1
S
2 1 X= Qk)

n—1
. e Sa |
>1+2 2 E—-— +2 &

k=0 k=t +1 X Sp
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So, together with (335) it is

n—1

G. L. ILIEV, U. OPITZ

clear that (36) will hold if we only show
_Ek

X

1+2 5.0&———-4—2 Z Ryt +2 Z (x+¢ + —-‘+€k)
e 1 i 1 - 93 X
_ 3 .
“h 21:53 1+8e/x - kz=0 Se/x—1 +2 kzt-n(x Sk . —x+8& )
“i42 Tl 4% : —2An—1-1) > -~ .
- k=0 1+8e/%, r=0 Gr/Sp 1 4

Now we learn from (26):
1 1

=1

+.
1+&t+l—k l+€’+

Z —
1+4% 1+¢t+l—-k 1+ at-i-l

+1

and therefore, as #==(n—3)/2,

n—1 1

+1

(+1 Et-\‘-l—k

n—1—(f+1) 1 1 |

1 o
b3 =5+ - = —+(n—2—10).
k=0 14+ S22 £=1 1+¢t+l—k ,+¢t+1+k) 2 )
+1 (+1 i1
From this we have finally
n—1 1 t 1
1+2 X g +4 X —2(n—1—1%)
p=0] 45k k-0 Sk
+1 El+l
=14+14+2n—2—-¢t)+4 2 -—-—"(n—l—t)
k=0 Ek -]
a!-0-1
¢
} 1 —A 1 - 4
4h§0 Se &y exp(d, -1
El+l El+l
- [ n l‘ ]—1 : Erite'
eXpl—- ——— | ex Pl 2 )—1
2 ya=({t+1) 2 V2 )

to be shown. We only used here £<n—3.

. n—2}, g=[n——3 —In*], and p(

Under the above assumptions (36) is equivalent to

which was
Case 4 x€ (5, &) te{g+1,..
<0.
p(x)
H=—n] > 2~ z
S, +x  x+§,,., -t

&t-«\'

=8y gm0 [x—
St t 1

| p(— x)
( r+t, * -x+¢, )+ p(x)
X+& 1
u-e‘,-|>2" 3 Grgy + == )

Jt, 41

X)
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1 1 1 |p(—x) |
+2d e+ et e T SRRt Am
X i1y " *+&;
(45) ¢>(1 + g ) (1 +x—) /‘l=10 "——t"&i’
J=t, t+1

X €t+l 2—l X __I_
>2(1— ?) — =31 j:}{; (:‘T"ET+ —x+%; )]

Jt, t41
$2— SO et —+ 1
__x’_ —-1+x—’ l+_;+} —l+£§f—l
—x |
+(1__) {1 H—l) |P(p(x‘;
We note the following facts in short:
1 1 1 1
46 1__1'_) 12tk 1+1 + +
——(l———)(l &t+l) [2 ﬁ: 1 2§t+l 1

Far 3143 T gty 1S

l_aﬂ—l ) BRCE
2 = t
<, & x
14—L 1+
e Sri1
|21
(47) The expression ‘;' is strictly increasing in x
T
X

O 5

while . i‘ is strictly decreasing in x.

Et+l

(48) The function (I + ’“)(1+ ) takes its minimum on

(€41 &) at the point x=y &, &, the function

(1 ﬂ-t%) (- ':'.) becomes maximal there,

103
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So from (46) and (35) it is clear that our assertion (45) will follow from

n—1 x+E;
G+&aeetn 2
=0 ‘x—ii
JE 141
e 1 1St 1-x
Al —Ey (-t (g i X S
>~(l él)(l X )[I'EO (x-H‘.i + t+§ )]+4[‘+§_p_ 1+ X ]
jt, t41 x €
+O—Z)a—2n 5
and this will, by (47) and (48), be again a consequencc of
n—1 +il " h ¥
(49) (Lpp T i>2(1—pf T ol (55 +—=5g )
"t t+1 /-t! 141
+2(1—p)+(1—pp T,
where we define
I 1 . e
(50) p=pP(t)=V &1 /5 =exXp(— 5 Ag) 0 in £ (see (26)).
By the same arguments as in (43), (44) (49) will follow from
—1 n—1 E
l4+p)14+2 255—+2 £ ——
( +p)( M Jj=0 a]-"“" J=t +2 'r‘al')

et n
>21-pPl X (—xié;+ ‘:ii'a; NH+2(1—p2)+(1—p)? 4 -
/*I. 41

Now let us regard p as an independent variable which can take the dis-
crete values p(¢g+1),..., p(n-—2). Then clearly by (50) with p(n—2)  exp

(— 5 -5)~0.4559381
(51) (14 pP=(1+p(n—2)P=2.1 = 1.9=2(1 —p*(n—2)]

+[1—p(n—2)P 5 =2(1—p?)+(1—p)*-§-

Hence we have only to establish
&
X jetya =

g

l ) fil X
(1+p) l, 5=

n—1 . =1 . —l .
>(1—p)? [/3;0 mﬁ" X - |

JHt, t+1 p=0 &% jatya XY
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t—1 X n—1
<>4p X —+(1—-pp =
=0 J—

X
5, X t+2 -V‘éj
-1

>(1—pp T T

i=t, t+1 Y15

Here all sums are positive. Disregarding the third sum on the left our

assertion follows from the remark that ch—a;lz"x—_ and that as in (51):

x+§;
dp=4p(n—2)>[1—-p(n—2)2=(1—p)~.
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