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ON THE SPACES WHICH HAVE A t -LATTICE OF OPEN MAPPINGS

VESKO M. VALOV

A criterion is obtained for %(t)-embeddability (€-embeddability) of a given space into a
space with a t-lattice of open mappings. As a corollary it is shown that several classes of
topological spaces have the same absolute (neighbourhood) retracts.

1. Notations and terminology. Completely regular spaces and continuous
mappings are considered only. The terminology from the Engelking’s book
[4] is adopted except for the notations which are explicitly defined here.

In a topological space X, a subset which is an intersection of t = N, open

sets is called a Gi-set and a union of an arbitrary number of Gs-sets is call-

ed a Giz-set (see [8]). Let f and g be two mappings defined on the same
space .X. Then we write f<g iff there exists amapping % :f(X)— g(X) with
s=hof.
¢ Le{ t be an infinite cardinal number. Following E. Shchepin [9] we say
that a family L of mappings, defined on X, is a t-lattice of X, if it  satis-
fies the following conditions:

1. If {A,:s¢S}=L and for every finite set §'<S the diagonal mapping
A h, belongs to L, then A hgelL.

2. For every mapping f defined on X, there exist mappings £¢L and
8:h(X)—~f(X) such f=goh and w(h(X))=w(f(X)).

An N, -lattice is called simply a lattice. When X is a compact space these
concepts comcnde with the concepts of t-lattice and lattice, introduced by
Shchepin in [9], where he proved that every x-metrizable compact space
possesses a lattlce of open mappings. There are nonscompact spaces which pos-
sess a lattice of open mappings. For example, if X=1I{Xo:a¢A} and w(Xo)<t
for every a¢A, then the collection of all projections of X is a t-lattice.

A subset M of a given space X is called é(tr)-embedded in X, if every
mapping f defined on M with w(f(M))<1t has a continuous extension
f: X —~f(M). It is obvious that if M is % (r)-embedded in X, then it is €-em-
bedded in X, but the converse is not true even for t=N,. For example, the set
N of all natural numbers is %-embedded in R and N is not € (N,)embed-
ded in R.

The space X is said to be t-pseudocompact if X is € (t))-embedded in
BX, i.e. if the existence of a mapping from X onto some Y with @(Y )<t
implies that ¥ is a compact space. Obviously, the space X is N,-pseudocom-
pact iff X is a pseudocompact space.

Finally, we recall that the space X is an absolute (neighborhood) retract
for a given class 2 of topological spaces, briefly A(NV)R(?), if X¢ 2 and for
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every closed embedding of X into Y ¢ there exists a retraction r: V' -~ X (a
neighbourhood U of X in YV and a retraction r:U —~ X).

2. Theorems. We need the following two lemmas.

Lemma 1 [11). Let the space X possess a rt-lattice L of open map-
pings and let o be a family of Gi-subsets of X. Then there exists a sub-
family 2 of o and a mapping IzeLﬁ such that Card (#B)<th, wh(X )=TA,
(h'h(UB)~U#B —=Ust and hh(B)— B for every B¢A.

Lemma 2 [11] Let the space X possess a t-latice L of open mappings
and let F be a Gls-subset of X. If U and V are disjoint open subsets of
F, then there is such a mapping h¢l that h'h(F)—=F, h(U)nh(V)- @
and wh(X)<rt. x

Theorem Let the space X possess a lattice of open mappings and

let F be a closed Gs}: -subset of X. If BY is a closed continuous image of
F then Y is a pseudocompact space.
Proof Let f:F —~BY is a closed mapping from F onto PY. Let us sup-

pose that there exists an unbounded function g:¥V-—R. If g; BY—~BR is the
natural extensmn of g we put f—gof. For every r¢R the set f1(r) is a

closed G° -sumbfet of X. Thus, by Lemma 1, there exists a mapping 4, €L
such that 4, ' A (F '(1))= f () and wh(X)<N, Therefore, f () is a closed

Gs O.subset of X. If we use again the Lemma 1 for the family o/ = {f"(r) re R}
we get a countable subfamily # - (7' r¢R'} and a mapping k€L such that
lh(f—'(r))“j —Yr) for every reR’, h— \VWUB)=U# — Ust and Wh(X)=N,.
Let us define a multivalued map ®:A(U# — BR by the formula ®(z)- f(h '(2))-
Since 4 is open and ®(z) is an one-point set for every z¢/A(U%), the mapping
® is singlevalued and continuous. Besides we have that O (H(URB) -BR, i. e.

w(BR)<N,. Consequently, the space Y is pseudocompact

The special case of this theorem, when BY is a dyadic compact, was pro-
ved by R. Engelking and A.Pelczynski in [6]

Proposition 1. Let the space X possess a t-lattice L. of open map-
pings and let the closure A of the set A<X be a Gix-set in X. Then Ais
€ (n)-embedded in A iff ©(A) is € (p)-embedded in 9 (A) for each ¢ ¢ L with

oo (A)—A and wo (X )—1hp.
Proof. Let ¢(A) be é(u)-embedded in @(A) for each ¢¢L, for which
0 '¢(A)=A and we(X)<tip. Let f:A-—~Y be a mapping from A onto a
space Y with @(Y)<pn Let # be a base of VY and Card‘c “u. A pair
Oy = (W,. W %), where Wi¢®, i—1,2 is called disjoint if winw? ~=@. Let
c={o, seS} be the set of all disjoint pairs. Obviously, card o<u. We put
Us = f~(W5), i—=1,21f (7% are the maximal open subsets of A with U — U‘
NA, i=1, 2, then Uxﬂ U,r--? By LLemma 2, there us a mapping ¢ ¢ L. such that
o 'p(A)=A, (p(U)ﬂ(p(U for every s¢S and wo(X)=TtAp
Then f(xy)=f(xy) if ©(x,)= (x,) and X, Xg€ A. Let is define a mapping f,:9(A)
» Y by the formula f,((p(x)) =f(¢ Yp(x)) N A) for x¢ A. Obviously, this defi-
nition is correct and f,(¢ (A))=Y. It is easily seen that f, is continuous, so
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there exists a continuous extension ﬂ:¢(/f)-y of f,. Then the mapping
7,0@ is a continuous extension of f.

Let A be é(p)-embeddedin A and f:9(A)—Y is a mapping from ¢(A4)
onto Y with @(¥)<p, where ¢¢L, 97'9(A)=A and wo (X)= tap. Let
f,: A — Y be a continuous extension of f,¢. Then the map f:9(A)— Y, defined by
the formula f((p (x)) =f1 (¢ '@ (x)),is continuous, since o '9(A)=A and o is
open. This completes the proof.

Remark 1. In the same manner we can get that the set A of Proposi-
tion 1 is ¢-embeded (¥*-embedded, respectively) in A iff ¢(A) is ¢-embedded
(¢*-embedded, respectively) in ¢ (A) for every ¢¢L satisfying the conditions
¢ 19 (A)=(A) and we(X )=1A.

Theorem 2. Let the compact space X possess a t-lattice L of open
mappings and let the closure A be a Giz-set in X. Then the space A is
t-pseudocompact iff ¢ (A)=e(A) for each ¢¢L with w(X)=rt.

Proof. Obviously, if A is t-pseudocompact then o(A)=¢(A) for o¢L
with we (X)=r.

Conversely, let ¢(A)=¢(A) for each ¢¢L with we (X)=<t and let f:A-Y
be a mapping from A onto a space Y with w(Y)<rt. By Proposition 1 A is
€(t)-embedded in A, so there exists a continuous extension 7:Z—¢ Yof f i.e.
Y is a compact space. Hence, A is t-pseudocompact and the theorem is
proved.

Remark 2. (i). The conclusion of Theorem 2 can be expressed in a
different way: A is t-pseudocompact iff there exists no non-empty Gi-subset
of A contained in AN_A.

(ii) The space X is t-pseudocompact iff the Stone-Chech remainder BX \ X
does not contain a non-empty Gs-subset of BX.

3. Corollary 1. Let the compact space X possess a t-lattice of open
mappings and lef F be a closed Gis-subset of X. If f:F—Y is an open
mapping from F onto a space Y then Y is the Stone-Chech compactification
of any of its dense and t-pseudocompact subset.

Proof. Let M be a dense and t-pseudcompact subset of Y. By Remark 2
(ii), the set ¥\ M does not contain non-empty Gi-subset of Y. Therefore
F_f (M) does not contain non-empty Gi-subset of F and, by Remark 2(i),
f~YM) is t-pseudocompact. From Proposition 1 it follows that F is the Stone-
Chech compactification of f~(M). Let 2: M—[0,1] be a real function and let
f:F-—[0,1] be the continuous extension of &,f. Then the map R:Y [0, 1],
defined by the formula h( y) = sup { ﬁx):xe %)} is a continuous extension
of h (see[l, pp. 358, problem 128]). Hence PM=Y.

The special case of Corollary 1, when X=VY==F, f=id and X is a Car-

tesian product of metrizable compact spaces, was proved by R. Engelking
and B. Efimov in [5]

Corollary 2 [3]. If G is a topological group, then BG is a topologi-
cal group ?’f G is pseudocompact.

Proof. Let G be a pseudocompact topological group. By Theorem 1 of

[3), there exists such a compact group G that G is embedded in G as a

Il Cn. Cepanxa, kn. 2
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dense subgroup. Since every compact topological group is x-metrizable [9], i. e,
it possessesa lattice of open mappings, by Corollary 1 G=BG. If BG is a to-
pological group it follows, by Theorem 1, that G is pseudocompact.

Corollary 3. Let {Xu; a€A} be a family of compact spaces and let
M, be a dense t-pseudocompact subset of X. for every a¢A. If the space
X=1{X.: a€A} possesses a t-lattice of open mappings the space M—=11{M,:
a¢€ A} is t-pseudocompact.

Proof. By Corollary 2 it suffices to show that every non-empty Gs-
subset of X intersects M. Let P— n{Up:B<1}F P, where for each B<It the
set Uy is open in X. We can consider the sets Uy as elements of the stan-
dard base of X, i. e Up=Il{Up.:a€A}. Then for every a¢A the set W,
= N{Upa :B< 1} is a non-empty Gsi-subset of X, and by Remark 2(ii), Wa N Ma
. If xq € Wo ) My, the point x==(xu)aca belongs to Mn P.

We shall say that the space X is locally pseudocompact (locally x-metri-
zable) if for every point x of X and for every its neighbourhood U there
exists such a closed pseudocompact (x-metrizable) neighbourhood V with
xeV=U.

Corollary 4. For any space X the following conditions are equiva-
lent :

a) Xe¢ ANR (completely regular spaces);

b) X¢€ ANR (locally compact spaces);

c) XeANR (locally pseudocompact spaces);

d) X€ANR (locally »-metrizable spaces).

For proving Corollary 4 we need the following two assertions:

A) Let BX I, where 1>k ~w(BX) and let YV=IF_(BX~_X). If for
some neighbourhood U of X in Y there exists a retraction r:U — X,then X
is locally compact.

Proof. Let x,¢.X. _Since xo¢ Y\ U™ there is sgch an open neighbgur'
hood V of x, in /% that V"N Y U = @. Hence M= V™ (BX \ A)=UN(V").
Suppose there exists a non- emptv Gj-subset P of V/° which is contained in

BX ~\X. bmcc VT s a Go “subset of /° (see[9]), then P is a Gi-subset of
I, wW(P) This is a contradiction, because w(P)<=w(BX) - A Therefore
M is, b\ Remark 2(i), a A-pseudocompact space, i. e. r(M) is a compact space;
besides #(M) is a ncighbourhood of the point x, in X. Consequently, X is a
locally compact space.

B) The space Y defined in A), is locally pseudocompact and locally
x-metrizable.

Proof. From the choice of t it follows that Y is a dense subset of /¢
E. Shchepin has proved in [9], that x-metrizability is hereditary with res-
pect to densc subsets and to closed domains. Hence, Y is locally »-metrizable.
Let v, ¢} and let W be an open neighbourhood of y, in Y. Then there exists

such an open subset W, of I+ that W, Y=W. We have WY=W/ nY, i e
W W (BX - X). Since @w(BX ~ X) =A<t it follows from Theorem 2

that WY is a pseudocompact space. Therefore, ¥ is a locally pseudocompact
space.

Proof of the Corollary 4. The implications a) -~ b) and ¢) — b) follow
from A) and B) respectively.
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d) — b). If X¢ANR (locally x-metrizable spaces), by A) and B), X is a
locally compact space. Since each locally compact space is a closed subset of
FN\_{a} for some 1>N, and a¢/r, which is locally x-metrizable, X¢ ANR (lo-
cally compact spaces).

b) — a). Let X be a closed subset of 1. Then X is a closed subset of
the locally compact space BY " (XP¥\ X) and now it is easy to end the
proof.

b) — ¢). It follows from the implication b) — a).

b) - d). Let X¢ ANR (locally compact spaces). Inview of the implication
b) — a) it suffices to show that X is locally x-metrizable. Let the one-point
compactification ®X of X is embedded in /* for some t>N,. Then there exists
a retractionr:{/—~ X, where U isan open subset of I\ {o}. If x,¢X and Ox,
its neighbourhood in X, there exists such an open neighbourhood V of x, in
[ that V' U, r(V)<Ox, and V'* top I Let r be the restriction of 7 on
Vr and W=r (V1 X) Obviously, W is on open subset of V/* and r(Wr)
—VNX"cX so the set V1 X' is a retract of W', Since x-metrizability is
hereditary with respect to closed domains and any retract of a x-metrizable
compact space is one (see [9; 10]), the set VNnX is a x-metrizable neigh-
bourhood of x, in X and V n X/ <Ox, Hence X is locally x-metrizable.

Corollary 5. For every space X the following conditions are equi-
valent :

a) X¢AR (completely regular spaces);

b) X¢AR (compact spaces);

c) X¢AR (locally compact spaces);

d) X¢ AR (pseudocompact spaces);

e) X¢AR (x-metrizable spaces).

The proof of Corollary 5 is similar to the proof of Corollary 4, so it is
omitted.

Let us note, that the implication a) — b) in Corollary 5 answers the ques-
tion of V. Belnov [2] about the existence of servant retracts in the class of
all Hausdorff topological Abelian groups in the negative.

Yu. Lisitza called my attention to the fact that the equivalence of the
conditions a) and b) in the last two corollaries is proved by O. Hanner in
[7), although it is not formulated explicitly.

The next propositions are dimensional analogs (here the covering dimen-
sion is meant) of Corollary 4 and Corollary 5, respectively.

Corollary 6. For every space X the following conditions are equi-
valent :

a) X¢ ANR (n-dimensional completely regular space);

b) X¢ ANR (n-dimensional locally compact spaces);

¢) X¢ ANR (n-dimensional locally pseudocompact spaces).

Corollary 7. The following conditions are equivalent for space X :

a) X¢ AR (n-dimensional completely regular spaces);

b) X¢AR (n-dimensional compact spaces);

¢) X¢AR (n-dimensional locally compact spaces).

The author would like to thank S. Nedev and G. Dimov for the iseful
discussions.
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Added in proof. The equivalence of the conditions a) and b) in both
Corollary 4 and Corollary 5 was proved by E. Michael in [12]. Our proof
is diferent from Michael’s one.
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