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AN AXIOMATIC CHARACTERIZATION OF THE STONE DUALITY
GEORGI D. DIMOV

in this paper an axiomatic description of the Stone duality functors for Boolean algebras
and distributive lattices with zero and idenlity is given.

In [3] Iv. Prodanov proved that every duality functor F:2C — ZC.
where ZC is the category of all locally compact Abelian topological groups
and continuous homomorphisms, such that for any two objects G,, G, € Obj ZC
and for any two morphisms f, g€ Morgy(G,, G,) holds F(f+g)=Ff)+ F&)

is natural equivalent to the classical Pontrjagin duality functor, i e. he gave
an axiomatic description of the Pontrjagin duality. Iv. Prodanov asked if there
is an axiomatic description of the Stone duality functors for Boolean algebras
and for distributive lattices with zero and identity. The present article ans-
wers these questions in the affirmative. The results were announced without
proofs in [6].

Let us first recall the definitions of the Stone duality functors (see
(4555 2 1]

A subset Y of a partially ordered set (X, =) is increasing (decreasing)
if x¢X, yeY and y<x (x=<y) imply x¢€VY.

An ordered space (X, 7, <) (i.e. a set X, with a topology 7, endowed
with a partial order <) is said to be totally order disconnected (or briefly
T. O.D.) if, given x, y¢ X with y<x, then there exists a clopen increasing
set U such that y¢ U, x¢U. It is easy to see that totally order disconnected-
ness of (X, 7, <) implies that 7 is T, and reduces to total disconnected-
ness when =< is the trivial order: x<y iff x—y.

A map f: X — Y, where X, Y are partially ordered sets, is increasing if
X,<x, in X implies f(x,)=<f(xy) in Y. Obviously, f is increasing iff f~(A4) is
increasing for every increasing subset A of Y.

We shall denote:

by # — the category of all Boolean algebras and Boolean homomorphisms ;

by C— the category of all totally disconnected compact Hausdorff topo-
logical spaces and continuous maps;

by ® — the category of all distributive lattices with zero and identity
and lattice homomorphisms;

by 2 — the category of all compact T.O.D. ordered spaces and increa-
sing maps;

by T:# —C and by §:C — # —the classical Stone duality functors;

by K:® — 2 and by L:2 — R —the classical Stone-Priestley duality
functors;

by 2-- the simplest Boolean algebra, which contains only 0 (zero) and 1
(identity);
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166 G. D. DIMOV

by P-— the one-point topological space; we shall write P={p};
by D —the two-point discrete topological space, which points we shall

denote by 0 and 1;

by D — the space D, ordered by the relation = :0<1;
by | X' — the cardinality of the set X.
If B¢ Obj#, then TH is, by definition, the set Mor 4(B, 2), endowed with

the topology 7 induced by the Tychonoff topology of 25, where the set 2 is
considered with the discrete topology. If A, B¢Obj# and f¢€ Mor 4(A, B),

then 7f: TB — TA is defined by Tf(a)=a-f for any a¢ Morg(B,2)=TB.

If X¢ObjC, then SX is, by definition, the set of all clopen subsets of
X with the obvious Boolean operations, zero and identity. If X, Y¢ObjC and
f€é Morc(X, Y), then Sf:SY — SX is defined by SAU)=f"'(U) for any U€ SY.

If A¢ Obj#, then KA is, by definition, the set Mory (4, 2) with the to-

pology 7 induced by the Tychnoff topology of 24 (where the set 2 is con-
sidered with the discrete topology) and with the order < defined with:a<p
iff a(a)<p(a) for any a€A (a, P€ KA). If A, BeObjZ and f¢ Mor g(A, B),

then Kf: KB — KA is defined by Kf(a)=aof for any a¢ KB.

If X=(X, 7, =)cObj2, then LX is, by definition, the set of all clopen
increasing subsets of X with the obvious lattice operations, zero and identity.
If X=(X, 7, <)€O0bj#? and ¥ =(Y, 1, =,)€ Obj# and if f¢ Morp (X, Y), then

Lf:LY — LX is defined by LAU)=f""(U) for any U¢LY.

Finally, we recall that:

(i) If ', and ¥, are two categories and F,: | — Ay Fy: A — A,
are two contravariant (covariant) functors, then the functors F, and F, are
natural equivalent iff there exists a function

q{ Obj . #, —— Mor X,
' - s N
X sX¢€] 1orfg(F,X, F,X),

such that sX is isomorphism for any X¢Obj ¥, and sX,oF, f-F,fosX,
(sX,0F f=F,fosX)) for any f¢ ‘\"‘"X](X" X,) (we shall write briefly

Fl:/F, or Fl"\;Fg);

(i) A contravariant (covariant) functor F: ¥, — ¥, is a duality (equiva-
lence) if there exists a contravariant (covariant) functor G: ¥’y — X, (which
is called a inverse duality to F (inverse equivalence to F)), such that Go F
-_:ﬁlx‘ and FoGwl.[.z, where l-)"x:f‘ — A, and 1, Ay — X, are the

2

identity functors. Let us note that if F: 4", — X, is a duality (equivalence)
then the inverse duality (inverse equivalence) G to F is unique up to natural
equivalence ; therefore it will be denoted by F~'. An equivalence F: X, — X,
is called an autoequivalence. If # is a category, then the class of all (up to
natural equivalence) autoequivalence functors F: X —— X will be denoted by
Aut . 1t is clear that if Aut# is a set, then it is a group.

Now we may formulate our first result.

Theorem 1. If X is a full subcategory of the category 2 of all
zero-dimensional Hausdorff spaces and continuous maps and if there exists
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a duality F: %3 —~ A, then the category X coincides with the category C
and F~T.

Corollary 1. Aut# and AutC are one-point sets (and hence, the
groups Aut # and AutC are trivial).

We need some definitions in order to formulate our second result.

Definition 1. Let (X, 7, =) be an ordered topological space and
let (X) (Z(X)) be the family of all clopen increasing (decreasing) subsets
of X. Then the ordered topological space (X, 7, <) is called an order zero-
dimensional space (briefly O.Z.D.) if the family #(X) Z(X) is an open
subbase of the topology 7 of X.

Obviously, if (X, .7, <) is an O. Z.D. space and =< is the trivial order,
then (X, .7) is a zero-dimensional space. Thus a T.O.D. space ncedn’'t be an
O. Z. D. space. It is not difficult to construct an ordered space (X, 7, =),
which is Hausdorff and O.Z.D., but not T.O.D. Consequently, there is no
including connection between the classes of all T. O.D. and all O. Z. D. orde-
red topological spaces, but it is easy to prove the following lemma.

Lemma 1. Every T. O. D. compact ordered space is an O. Z. D. space.
~ Let us define a covariant functor F: 2 — 2 by £X—(X, 7, <,)for every
X=(X, 7, <)eObj 2, where x,=<,x, iff x,=<x, (x;, x3€X), and by Ef=f
for every f€Morgy(X,Y) (where X, ¥V ¢ Obj 2). It is obvious that this defi-
nition is correct and that £ £=14; hence, £ is an equivalence. It is easy
to see that £ is not natural equivalent to 1.

Now we may formulate the following theorem.

Theorem 2. /f # is a full subcategory of the category F of all
T.0.D., O.Z.D. ordered topological spaces and continuous increasing maps
and if there exists a duality ® : R— ¥, then the category H coincides with
the category ? and either ® ~K or ®~E - K.

Corollary 2. Aut® and Aut? are sets and they are isomorphic as
groups to Z,.

We need some lemmas and propositions in order to prove Theorem 1
and Theorem 2.

The following proposition is well known.

Proposition 1. If X, and #, are two categories and G: X, — X,
is a duality, then the map

Gx_y{ Morxl(X. Y) — Morxg(GY. GX)

® — Geo
is a bijection for any X, Y ¢ Obj X ..
Using Proposition 1 it is easy to prove the following lemma.
Lemma 2. a) ®2=P and F2=P (see Theorems 1, 2); N )
b) If Ry={0, j, 1}, where 0<j< 1, then ®R,=D and if B,—
{0, b, 6", 1}, where with b’ we denote the Boolean complement of b, then
“Corollary 3. a) ®'P=2 and F-'P=2;
b) ®'D=R, and F'D=B,.
Lemma 3. For each A¢ Obj R (B¢ Obj®) there exists a bijection
Mt Morg(A, 2) — ®A(pg @ Morg (B, 2) — FB), such that for each

f€Mor g(A,, Ay) (g € Mor g(B,, By)) the following diagram commutes :
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Mor p(Aa 2) —Lo Morg(4,,2) (Morg(By2) —+ Mor (B, 2)
Ha, ! : Ha, Ha, l J na,
DA, L a4, FB, . FB),

where hy f(9) =@ o f (hag(w) =y e g) for any ¢¢Mor p(Ay 2) (y € Mor (B, 2))
(A,, Ay € Obj ).
Proof. If 4¢ Obj #, then Proposition 1 implies that the map
(D“{ Mor (A, 2) ——  Mor (92, ®4)
® — @p

is a bijection.
From Lemma 2a) it follows that ®2=P. Using this fact we may define
a map

K,I{ Mor (P, @A) —— @A

t —  Hp).
It is obvious that the map ». is a bijection.

We put pa=wx,40 @42 Then the map p, is a bijection and it is easy to
see, that the corresponding diagram commutes.

The map pg is constructed analogously.

Lemma 4. Let A¢ObjR (B¢ ObjA). If we consider the set Mot z(A, 2)
(Mor 4(B, 2) as a topological subspace of the topological space 24 (25)
where the set 2 is endowed with the discrete topology and the topology in
24 (28) is the Tychonoff topology, then the map n, (ug), which was defi-
ned in Lemma 3, is continuous.

Proof. Let us prove first that the map p,: Morgh(A, 2) — ®A is conti-
nuous, where pg—=%,40 ®4- (for the notations see the proof of Lemma 3).

Let @, € Mor 4(A, 2) and x,=pa(9,). Since ®A ¢ Obj #, the space @A is
an O. Z.D. space and hence, it has an open base 9J[ consisting of the sets of
the form UV, where U ¢ %(®A), V¢ 2(®A) (see Definition 1). Let W, =,
MV, belongs to A (where U,¢#(DPA), V,¢Z(®A)) and let x,¢ W,. We shall
prove that there exists a neighbourhood N, of the point ¢, such that
Ha(Np) = W, ~ ~ ~

Let fo, & :®A — D are two maps, such that f;'(1)=U, and g;'(0) = V.
Then, fo, & € Mor (PA, D) and hence we may consider the morphisms

O f,: ®-'D — O-'DA and d—'g,:®'D — ®~'®A. From Corollary 3b) it
follows that ®-'D=R,={0, j, 1} (0<j<1). Let us fix a natural equivalence
e, such that 14~ ®'o®. Now we put 7, =((eA)~' > ®'f)(j) and tg,=((eA)™!
o®~'g)j). If we denote by =, the projection of 24=T1{2,=2 :a ¢ A} onto 2,
then the set N,=Morg(A, 2)N n,—/‘((po(t,o))nn,;‘( ¢olte,)) is the requiring neigh-
bourhood of the point @,. ' ’
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Indeed, it is obvious that A, is an open subset of Morg(A, 2) and ¢,

belongs to N,. It remains to show that pi(Ny)= W,. Evidently, it is sufficient
to prove that pa(N,)—=U,and pa(Ng )= V,, where N, =Mor 4(A4,2)N n;‘((po(t,,,))

and N, = Mor 4(4, 2)N n;g‘(tpo(tg,,)).
Let feNy, i.e. feMorg(A, 2) and fit;,)=@dts). By definition p,(f)
—~®f(p). We must show that py( f)€ U, i e. that f(®f(p))=1.
Let us consider the following map
4{ s==0
p — L
Then q(MorJf(P, [5) and the diagram

commutes (since, by Lemma 2a), ®2=P). Hence, the following diagram
commutes:

DA

D,
o—'P

g i _— @,
We must show that f o ®f=gq.

) Let us consider the following diagram, where in every subdiagram, which
is commutative, lies the symbol + : '

N A

A
8 - * = + N # ' . +* e
o104 _ 2 op —— DA

Tl h
>, oD . @ 'f,

(here a = fo(eA) ' c ®~!f,and B==9, 0 (eA)" o ®~If,; €2=id,, since ®~'P=2 and
the equalities €2(0)=0, e2(1)=1 are obligatory).

We shall prove that ®~1f, o O lOf =D g.

Indeed, since ®'D=R,={0, j, 1} and f(¢;)=0y(¢s,). ts,=((eA) 1o <b“ifo)(j),
we have a(j)—(fo(eA)" o DX ) =Fit)=0utr) = (9g°(€A) ™o @11 X))
=B(j). But @(0)=0=p(0) and a(l)=1=p(l1). Hence, we obtain that a=p.
Now from @ 1g-=® '®@,0® ! fi=(idyo@yo(eA) )o@ 1f,=idyep=p and
OID fod ! fy=idyo fo(eA) o ® ! fy=idgoa=a it follows that ®'¢g=0'®f
o ®@1f,. It is evident that this equality implies ¢ =f,o ®f.
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Therefore, we proved that pa(Ny)=U,.
If we consider now instead of the map ¢ the map

r{ P 9
p—0,
we shall prove analogously that r-—=g,o®f, for every f¢N,, and hence,

pa(Ng)= V.
Consequently, the map p,4 is continuous.

The proof of the fact, that the map n, is continuous, is analogous.

Proof of Theorem 1. From the definition of the functor 7 we have
that for every Be¢Obj# the topological space 7B coincides with the set
Mor 4(B, 2). endowed with a topology as in Lemma 4. From Lemmas 3, 4 it

follows that the map pg: 7B — FB is a homeomorphism, since the space 7B
is compact. Hence, the space FB3 is compact for every B¢Obj# and there-
fore, # --C. Now, from Lemma 3, we obtain that the functors 7 and F are
natural equivalent, since Ak, f=Tf for every f¢Mory(B,, By) (where By, B,
¢ Obj B).

Lemma 5. Let A¢ObjR. If ®'q(j)=1 (where j¢ R, (see Lemma 2) and
q:P — D is the map, defined in the proof of Lemma 4 by q(p)=1), then
we order the set Morg(A, 2) by f<g iff fla)=g(a) for every a¢ A, and if
®—'g(j)=0, then we order the set Morgh(A.2) by f<g iff gla)y=f(a) for
every a¢A. Thenthe map pa:Morg(A,2) — ®A, defined in Lemma 3, is
increasing.

Proof. Let f, geMorg(A, 2) and f<g, f4 g Let us assume that p,(f)
<pa(g), i.e. ®f( p)=dg(p). Since ®A¢H, the space ®A is T.O.D. Then
there exists a clopen increasing subset U of the space ®A4, such that Of(p)elU
and ®g(p)¢U. Let the map 2 :®A —D is defined by #A~'(1)=U. Then 4
€ Mot (®A, D) and r(@f( p))=1, A(®g(p))=0. Therefore the diagram

P = DA
is commutative and we obtain, that the diagram

—og

@
e F DA
/
o i /
®'D

commutes. Analogously, if we consider the map
r{ pP— 9
p—0
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then we shall have that the diagram

>'of

®—1p

o—0A
‘r‘q\o—m %

is commutative and we shall obtain that the following diagram

oD ~
o ®A OOf o-'g o7 o og -
—————o.—lp o_lp —— o ’OA
eA’ f *id= id,’ P ’ eA
A 2 2 A

where e is the natural equivalence lxwfb“‘o(b, commutes. Since g=r, then
e

®—-lg+=®—'r. Therefore ®'g(j)=+=®'r(J).

Now we must consider two cases:

(i) Let ®—¢g(j)=1. Then ®'r(;)=0. )

We have 1=®"!g(j)=(®'®fc ®'h)(j)=(idyo fo(eA)™" o ®h)(j). Let
ay=((eA)y o ®'h)j). Then a€A and fla))=1. But 0=0~'r(j)=(0"'0g
o @—1h)( j)=(idy o g o (eA) ' o @A) j)=(id; > 8)(a,) = &(a,) and hence, g(ao)<f(a,).
Since f=g, i. e. f(a)<g(a) for every a¢A, we get a contradiction. Therefore
Ra( f)=pa(g)- ) ,

(i) Let ®—'¢(j)=0. Then ®—'r(j)=1.

We put again a,=((eA)'o®'k2)j) and we have, as in case (i), that
flag)=®-1g(j) and gay)—®'r(j). Hence, fla)<gla,). But f<g, i.e. ga)
<f(a) for every a¢A. The contradiction shows, that p,(f)=n,(2)

Lemma 6. Let A¢Obj# and the set Morg(A,2) is ordered as in

Lemma 5. Then the map (ny)~': ®A — Morg(A: 2) is increasing.

Proof. Let x,, x€¢®A and x,=X, X;5x5 Let fi=(ny)'(x), i=1, 2
Then f,€ Mor 4(A4, 2), i=1, 2. We must consider two cases:

(i) Let ®—'¢(j)=1. Let us assume, that f,<f,.

Since the set Morg(A, 2) in this case is ordered by f<g iff fla)<g(a)

for every a¢ A, if we endow this set with a topology as in Lemma 4, then
we shall obtain, that it coincides with the ordered topological space KA (see
the definition of KA). Hence, it is a compact T.O.D. space. It follows that
there exists a clopen increasing subset U of the space KA, such that f,¢U,

fo#¢U. Let h:KA— D is defined by A—(1)=U. Then k¢Mor (KA, D)
Mor»(KA, D) and h(f)=1, h(f;) =0.
Since K2-—P, we get maps Kf;: P — KA, i=1, 2. From the definition of
the functor K we obtain, that Kt{ p)=Kf(idg)=f, i=1, 2. Hence, (ko Kf,) p)
=1 and (ko Kf,)(p) =0. Now, if we define the map r by
r{ p—D
p —0,
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then the following diagram commutes :

LKA LKL LP e LKA
U I e P

Here by e is denoted the natural equivalence 1g4~L{o}K. From the definition

of L we have that LD ={{®}, {1}, {D}}=R,—{0, j, 1}, where O corresponds
to {#}). 1 — to {D} and j—to {1}. Since LP={@}, {P}}, i.e LP=2={0, 1},
we obtain that Lg(j)= Lq({l}) g ({1} ={P}=1=0"¢(j)." Hence, Lg=0~ 'q

Analogously, Lr(j)=Lr({1})=r'{1})={@}=0=@ '7(j). Therefore Lr-=d-'r
and we get the following commutative diagram

i' ) Lk O‘IDM‘
/{’//""" "'\"\‘ L E——

LKA____————,Z

ul C 4, e

fr

A__-—————b

whence we obtain the following commutative diagram where by e’ i1s denoted

01D -
«DL/I///' ‘\K = !
— OLKS,
DLKA q.——if—P P—-—"-'oLKA
O(eA) ‘ /\ to«A)
l
A

the natural equivalence lxwtb o®-!'. We have that x,=pu,(f)=®f(p), i=1,2

¢

and x,<x, The maps (®(eA))~!, ®Lk and (e’D)—‘ are increasing, since they
are morphisms in J#. Therefore we get, that y,=((¢’ D)~'o®Lko(D(eA ) !
o @ fy0id )X p)=((¢ Dy ' o ®Lh o (®(eA))"Nx))<((e'D)~ o ®LA = (B(eA)) ) (x3)
~((e'D)t o ®Lh o (D €A)) " o ® fyoid, X p)=ys. But_y,=((e'D)~ o ®Lh ~®LKF,)
() = (D)~ o ®Dg) p)=(g-(id,)"(p)=q(p)=T1 and y,=(¢'D) ~' = ® Lk
o ®LKS,)(p)=((e’D)~" - ®d—'r) p)= (ro(id,)*X p)=r(p)=0. Hence, we have
that y, >y, The contradiction shows that f,<f,.

(ii) Let ®'¢(j)=0.

In this case the proof is analogous to the proof of the case (i). The only
difference is that instead of the functors K and L we must use the functors
K ~=EoK and L' -LoE, which are duality functors, too,
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Proof of the Theorem 2. From the definition of the functor K (K’ =E
oK) we have that, for every A¢Obj#, the ordered topological space KA
(K'A) coincides with the set Morg(A, 2), endowed with the topology, descri-

bed in Lemma 4, and with the order, described in Lemma 5 in the case when
O1g(j)=1(®'¢(j)=0). From Lemmas 3, 4, 5, 6 it follows that, when
D1g(j)=1(®'¢(j)=0), the mapu,:KA — ®A (p,:K’A— ®A) is an iso-
morphism in the category #. Therefore ®A is compact for every A¢Obj#
and hence, the category # coincides with the category 2 (from Lemma 1 it
follows that 2= #). Now, from Lemma 3, we obtain that either the functors
K and @ or the functors K'=FoK and ® are natural equivalent, since A, f
“Kf=K'f Tor every feMor y(A, A,) (where A;, A€ ObjR).
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