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ON THE DEPENDENCE OF THE DIFFERENTIAL PROPERTIES
OF A FUNCTION ON ITS BEST ALGEBRAIC APPROXIMATION

KAMEN G. IVANOV

We investigate the following problem: if for some natural » the series 77, vl E, (f)
converges, where E(f), is the best algebraic approximation of the function f¢Lp[—1, 1]
1<p=co), then what can we say about the existence of the derivatives of f and some of
their structural properties.

1. Introduction. The problem we consider is one of the so called inverse
problems in approximation theory. The investigations of that sort for trigono-
metrical approximation have been started by Bernstein and have been put in
an appropriate form by Timan (see [I, p. 346]) and the corresponding
references. The algebraic version is more complicated because of the effect of
the ends. Nevertheless numerous articles dealing with this problem have appear-
ed. Let us mention the following three papers: in [2] Fuksman considers
the uniform approximation and use the local moduli of continuity; in [3] Po-
tapov deals with the L, approximation but uses structural characteristics
based on the modified translation concept; in [4] Stens connects Fuksman'’s
results with results in terms of the modified transformation and the modified
derivative in uniform metric. In the present article we give an algebraic ana-
log of Timan's theorem [l, p. 346] using as a structural characteristic moduli
based on the usual translation. As a consequence we get an equivalent form
of the inverse part of Fuksman’s results. The paper contains the proofs of
some results announced in [5].

2. Definitions and preliminaries. We shall consider functions belonging
to the spaces L,=L,[—1, 1] (1=<p=-o) with the norm || f|,=[/",|f(x)|rdx]'"
for 1<=p<co. As usual when such problems are considered, L..[—1, 1] denotes
C[—1, 1], with sup norm. Let /, be the set of all algebraic polynomials of a
degree at most n. If we¢C[—1, 1], w=0, then the best L, approximation of
the function f€L,[—1, 1] by elements of H, with the weight w is E(w: f),
—inf{||(f—Qu[l,: QeH}: EL1: Ny=ELf)y

For x¢[—1, 1]; £>0: 4, r, ne N={1, 2,. ..} we set A(t, x)=#t/1—x2+1%
A()=AnY x); v, (x)=y (x)=(1—x2)—72 for [r/2]<i=r and vy, (x)=1 for
1<i=[r/2])

We shall need the following properties of A(Z, x):
If >0, x,y€[—1, 1], |x—y|<rA(4 x), then

A(t, x)/(AA+2)=A(t, ¥)=(2L+2)A(L, x)
The property (2.1) is proved under the additional conditions A=1, 2A¢<1
in [6] — inequality (2.5). The proof of (2.1) is similar without these restrictions

2.1)
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DIFFERENTIAL PROPERTIES OF A FUNCTION 185

Further on ¢(A, B,...) will denote a positive constant depending only
on the parameters in brackets. These constants may differ at each occurrence.
As structural characteristics we shall use the moduli (k¢N)

@2) ] w3 0= @ (g (fo 3 OOy
where

' (x
23) oif, %5 0=l | A5F() ]

for 1 =¢g< -> and
o fi x5 0(x))w =sup {| AR f(x))|: v|=0(x)}.

k
In (2.3) the finite difference Aff(x)= X (—l)"—‘( f )f(x+iv) is defined as 0
=0

if x or x+kv are not in [—1, 1]. In (2.2): ® may depend on various para-
meters and is positive being a function of x¢[—1, 1]; the weight w is non-
negative and continuous; l=p<oco; l==¢=co. For the properties of moduli
(22) see [6). Among thiese properties we shall use (l=p, g=co, real a,
f, gel,[—1, 1]):

(2.4) W f+ g @; 0)g,=Tf, @; 0)g,+T(8 @3 0)g,:
(2.5) W fo @y; 0)g, =1, (f, Wy 0)g, if @i(x)=wy(x)

for each x¢[—1, 1];

(2.6) W (1A A, ,=clk, @) || f(nA)* lp:

(27) W fs (18005 B, psc(k, a)n* || f®nAY+5|, for fWEL,.

Let us mention that inequalities (2.4) and (2.5) follow immediately from
(2.2); inequalities (2.6) and (2.7) are consequences of Theorem 4.1 and Coro-
llary 4.3 in [6]. We shall need the following three inequalities about polyno-
mials

(28) Q' [y=<cr] Ql, for each Q&H,;

(29) |(TRQW(x) [, = ek, 1) 7* || (VT—22PQE0) s
for every Q¢H,, pn=0;

(2.10) | (rA QM x) ||, < c(k, w)ym* || (nA»Q ],

for each m=n and each Q¢H,, p=0.

Inequalities (2.8) and (2.9) are givenin [7] and [8] respectively. Inequality
(2.10) is proved in Corollary 5 in [9]). We shall also use the following obvious
inequality

(2.11) (a+b)*<=2%a*+b*) for each a, a, 6>0.

We finish this section with
Lemma 1. Let 1=p=co, feL[—1, 1}, w(x)=y1—x° p be real. Then

G (ALY A0S WAL A, = c(mn™ || (A £l
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Proof. Let |[x—y —A/(x), x,ye[ —1, 1]. Then

W) —w( )| = I udu = f ’du

a yiI—u= x yr::ﬁ
Let x -cos¢ for some £¢[0,n]. In the above integral we set u-—cos7. Now
Lemma 3 in [10] yields

[ w(x)—w(y) == max {H:f”'dt, 41 dt} —4n—'.

t—din—!
This inequality, (2.3) and the identity
fEW)— AW Y)=[ o) —ANWE)+F () [wx)—w(y)]

give

lw,(fu, x5 A),—w(x)w,(f x; A,,),,‘§4rz—‘[2Ai(x) .I(x'£ m)\f(.\’) Pdy]'e,

where J(x), g(x)=[x—g(x), x+gx)|N[—1, 1]. Now using Lemma 2.2 in [6]
and (2.1) we get ‘

ktl(fw' (”An)u' An)p P Tl(f' \V(flA,,)“; An)p.pl

— 4 (nA () | | 1
~ n [__{ 2A,(x) J(x,j;n(x))‘f(y) o d

L fife ey gy

" -1 J(,V.(2+y/3—)A"(),)) 2A,(x)
1
=cn S| (AL 9P Pag? = cn || (8 £

3. The main theorem. Theorem 1. Lef feL,[—1, 1] (1=p=co) and
the series X3 V' —'E\(f), converge for some r¢N. f‘hen f=F almost every-
where, if p<oo, or f=F, if p=co, F has (r—1)st locally absolutely con-
tinuous derivative in (—1, 1), FO.y, ¢L,[—1, 1] for i=1, 2,...,r and

(3.1) R(FO, (nA,); An)p.P
<ok, A" X (e 1)V E(f),+n— L pEE(S),]
n=0 p=n+1

for i=0,1,...,p=[r/2];
(3.2) Tk(F(‘)\Vr,[' (”An)'_‘.; AII)P.P

<ck, N X (uH 1) HAE (N, +n S wHE(f),]
u=0 =n+1
fori—=p+1, p+2,..., rfork=1,if ris odd, or for each k, if r is even.
Remark. If the function @ is not a constant in the interval [—1, 1],
then the orders of the moduli of a function g and the function g¢ are diffe-
rent in general, If ¢ has a continuous kth derivative for 2=1,2,..., or ¢
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satisfies certain weaker conditions for =1, then the orders of the kth mo-
duli of g and g¢ coincide in many cases (but not always, e.g. g€ H,—,). Thus,
the behaviour of the moduli of go is not significant enough for the structure
of g. But it is impossible to omit the factor v, ; in (3.2) because it prevents a
possible fast increasing of A at the end-points of the interval and ensures
Fiy, ¢ L,. On the other hand, this increasing cannot influence the good
approximation of F because of the properties of the algebraic polynomials as
an approximating system. Let us mention that the factor v, ; also occurs in
Fuksman’s [2] and Stens’ [4] articles.

Proof of Theorem 1. We follow the idea of [1, p. 346]. Let Py be the

polynomial of the best L, approximation of f of degree v, i. e.
(3.3) ELf)p=1f=pvlp
For i=0, 1,...,r we consider the sequence S'?=p{)+ It} pf;v)“—p‘_z"\’,}.
a) i=0,1,...,p. Then (2.8) and (3.3) give
PR —PR = @2V VX [ Pyvsr—Pyv

@2 | pyrr— ot | P f = e@20- 201 2E (f),

2\' v

et Y @Y HEMfy=cin S woE),

H,sz-—|+l pu=2v—li1

Hence for m>n=—>N we have

m—1 m—1
. . . Rt . o m i -
|'S,.‘) 'S,:.)4p‘ | ~ (p::)+1 p;:,-})“p =z “p(‘\,)+1 ‘\Zﬂp
v=n 2 v=n 2 2

2’"—1 oo
<e(r, i) X WIE(fly=dr ) X wWTEf),
R p=2" +1

Therefore, the sequence {S¥}=  converges in L,[—1, 1] to f;€L,.

n=1

b) i=p+1, p+2,...,r. Then (2.8), (2.9) and (3.3) give
L PD o= (Pyer — PO VT2 |
SN | (PP Y470 = KL+ 2=0 | pyiy — Py
< (X2 Ep ()

Arguing as in a) we get that  the sequence {SU)y;}= | convergesin L,[—1, 1]
to g —w.f,€L, Hence there is a subsequence {S, }=_, such that for each
i=0,1,...,r we have

(3.9) Sf,’:"lh o fovi (a e and [(S)) —f)wi llp gz O

Let x,€(—1, 1) be such that
(3-5) 'S}"') (xo)mf((xo) for t=0v l... oo Ve
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Let x, xo€[—y, y] for y€]1/2, 1). For i=1, 2.... r we set ®(x)=f, (x)—
fia(x0)— [% f(t)dt. Then

DO = fii )= SE) iy () + S (o) — [ (0 —SP ()t

| frmaC = SN [+ fry (x0)—SU=D (x0) + [|fAt)— SO (@) .
m m —y m
Hence
(3-6) | D irl-pl—.v-,vl

= fi——1'”Sf.':” '\Lpr—y-_vl +(2y)* { 5fi—1(xo)"S:,:l)(xo)f +_.flf-(t)‘ S(,,"’" (2) dt}

SVia(fimr =S5 Iyt Wi 9)+ 2| fima(X0)— S —"Xxo) |
+ 20w (fi=SP) |-/ VL Y)

=l Wil 1= ST eyt Wiea(D) 42 | fia(X0) — 57 (o) |
+ 4wl fi= S [l -y 01/ WA Y)-

Let m tend to infinity in the last line of (3.6). Then using (3.4) and (3.5) we
get [|¢|1L (—».y1=0. Since y can be chosen arbitrarily closed to 1, we have

fi(x)= f,_ (x0)+ 3 fAB)dt a. e. in (—1, 1) for 1=1, 2,...,r

Remark 2. Here “a, e.” means “for almost all x” if p<co and “for
all x”7 if p=-co.

Therefore 7 coincides a.e. with a function F having r—1st locally abso-
utely continuous derivative in (—1, 1) and F®¢L,[—1, 1],FOy,¢L,[—1,1]
for i=p+1, p+2,...,r

We shall now prove (3.1), i.e. i=0, 1,...,p. We set m=[Inn/ln2]+1.
Then (2.4) give

(B.7) (fD, (ALY 5 Ay, =T fO—S0, (nAL); Ay, ,+ (S, (nAY 5 Ay,
Using (2.4), (2.7) and (2.10) we get
(3.8) TS, (nA,.)'; Ap =T PO, (nAY 3 A,

+ s t,(p“’ m » (nAY 5 Anp.p
SCORN | B HpE+0—p0) [y + S || (A P+ b0 P4 |,
m—1 )
scB). a7l pr=poll,+ 2 2040E [ p iy — po ||}

Se(Ryrt £ (e DF+1 E )
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From (2.6), (2.11), (2.9) and (2.8) we obtain
(3.9) rk(f(i)ﬁS(”:x')‘ (”An)i; An)p.p .§¢‘(k) ;I‘i (f(i)_S(’:l'))(nAn)i i!,,

=k, §) z = 1 (Py1(x)- PR CNNT—F [, +n~ || p&2,, —P D}

o(k, i) X 200 | poyir—pyllp+aT 200 I p vy —p )
v=m

oo

<c(k, Dni B 200 | p iy p i, < ok, D Z pEE(f),

v=m u=n+l1

Inequalities (3.7), (3.8) and (3.9) prove (3.1).
We shall now prove (3.2), i.e. i=p+1, p+2,...,r. Let & r be those
from the condition of the theorem and m=[Inn/ln2]+1. Then (2.4) give

(3-10) W FOv, (nA) 5 Ay,

=T(FO—=SD IWe (78,)775 Ap)pp+ TS, Ve (A~ Ay
Using (2.6), (2.11), (2.9), (2.8) and the inequality n2—™"<1 we get
B (FO—SD i (nAY 5 Ay p=c(k, 1)||(FO—SD, YwdnA,)y—,

Sl 2 {[(pr ()P )KL=,
+n—|| (p2v+1(x)—-p2v(x))“')(l — xRy,

Selk 1) E @O gyl a2 2D p s —p )
sk ) I (@22 (s |+ Py )

<c(k, ryn—"

V=

3148

204 E ((flp=c(k, rn—" n=§+l WELf)y

+1

When proving (3.11) we do not pay attention whether » is even or odd
because we do not use the differential properties of modulus 7,.

Let first » be even (r=2p). Then vy, (x)=(1—x2)y—" is a polynomial of
degree 2(i—p), i. e. the functiony,, ; has not any singularities at the end-points of
the interval. Therefore we can prove (3.2) for arbitrary 4.

Using (2.7) and (2.10) we get

(3.12) (S, v (nA) Ay p=clh, || (A1 (SR W™ I,
=c(k, Nt { || (A (PP w)® ||+ ll (A= (PR —PQ IV I}

<c(k, P {i—p) || (ALY~ PP v, ||+ = Z Q=2 ) (| (nAy =P,
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—PO WL )= clle, K | (RAYC PO —p) [+ S 200K (nAY (P P o)

m

=c(k, A pollp + 2 207N i =P )
v={ = =

~c(k, NnHE(f),+ S 200 E (), = el rin S (ut D EL(T)pe
v=0 - =0

Now (3.10), (3.11) and (3.12) prove (3.2) for even r.
Let » be odd (r=2p+1). Therefore, y,; is not a polynomial and has
singularities at the end-points of the interval. Using Lemma 1, (2.7), (2.10) and

(2.5) we get
(3.13) L(SY, v (ALY 15 A,
Sr(SH (1 x2 o=, T—x2(rA,)Y 15 Ay, +e(rn™ | S0 \wilnA) =" |,
S(SY L (L—x2y ot (A Ay e+ e(nT LSO, (nALY

< (1| (R S, (1232 |, +e(rn | S, (nAY |,
et {1 (ALY pCeN] — 2o [, pOA, Y |,

+é“l Ay = (P AO—pQ N (1 — Y= [l + (PR —PINAY ]
~ (Pt { (ALY~ POV T — ) |, pA(nAY |,
+ EU (241 (18,1 P (%) = PNV T+ 2P =
FLPDA =P NRAY ()} =c(n ] (A X (PO —P3)

E X2 (AP =P )0 phme(nt E (e IYE(S),
v M

Zo
We complete the proof of the theorem by applying (3.11) and (3.13) in (3.10).
4. Corollaries. 1. Under the conditions of Theorem 1 for every 2¢ N and
a>p we have

(1) Enid (18,05 FOY=clh, Din— £ (u+ 1pH4=1E(),

+n° X p?®lE(S),)
o

W -1
We get (4.1) as a consequence of Theorem 1 and Steckin’s type asser-
tion (geL,[—1, 1])
b.ﬁk((”An)p; g)p(: ('(P. k) Tk(g' (nA”)"; Au)p.p
proved in [11].
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2. Under the conditions of Theorem 1 we have for a>p

(4.2) E f),=0 (n—=*) <> E((nA,); F®),=0 (n—°).
(4.2) follows from Corollary 1 and the inequality
(4.3) Enio( [)o=c(p)n— E,((nA,)r; F®),

proved in [9]. (4.1) and (4.3) show that E,(f), is naturally connected with the
welghted approximation E,((nA,)°; F®), of the derivative F® but not with
Ef(F®),.
3. Usmg the simple fact that

1 _ < S

1+\,§ Vlf;x2+\/—€ o
for e=A(¢, x), we get the inverse part ofZFuksman’s result in [2] as a conse-
quence of Theorem 1.
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