Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

MATHEMATICS AND COMPUTER SCIENCE
A CASE STUDY: ALGEBRAIC ALGORITHMS

A. MIOLA

The subject of this paper concerns (he relations between Mathematics and Computer
Science. We do like to discuss questions about the theoretical bases of the so-called Compu-
ter Algebra, also known as Symbolic and Algebraic Manipulation (see [1]). Our main goal is
to show how the algebraic structure of the entire class of algorithms for computer algebra
systems gives us a strong and powerful methodologies to really slructure and analyze soluti-
ons to computational problems.

1. Introduction. Two main questions raise in Computer Science in term
of establishing philosophical and computational principles

First: What a machine can do? Or, with a more precise formulation:
What computations can be performed by a machine, if you assume to ignore
real limitations such as computing time and memory size ?

Scecond : How easy it is for a machine to do what it can do? Or: What
is the efficiency the machine does with what it can do?

These two questions define two big components of computer science
Computability and computational complexity.

Mathematics has actually given a strong contribution and powerful tools
to study the fundamentals of computability. In this sense the main support to
Computer Science has been in making available a deep understanding of al-
gorithmic mechanisms. Just to substantiate this statement think to automata
theory.

The™® obvious lake of this component of computer science concerns
the efficiency considerations of a computation. And the entire com-
ponent of computational complexity represents in fact a feedback from Compu-
ter Science to Mathematics. The relevance of this area comes from the capa-
bility of creating a taxonomy of algorithms at different levels of abstraction
in order to design and execute an algorithm in an effective and efficient way.

We do like to present in this paper some considerations on the relation
between mathematics and computer science in the particular area of computer
algebra. In fact we present first the power of algebraic approaches and techni-
ques in algorithms designing. Then we also introduce to the problem of algo-
rithms analysis. Two ways will be underlined to study and reduce the com-
plexity of an algorithm: the reducibility of a problem to a simpler problem and
the reducibility of a problem to other problems already known.

The first part essentially gives the basic current trend in what can be
done in algebraic computation saving all the power and the structure of the
modern algebra.

SERDICA Bulgaricae mathematicae publicationes. Vol. 10, 1984, p. 216—222.

MATHEMATICS AND COMPUTER SCIENCE : ALGEBRAIC ALGORITHMS 217

The second and third parts concern the way how to obtain efficient algo-
rithms. Also in order to show that the hierarchical structure, which is typical
in algebra, is again alive from a computational point of view.

Altogether these considerations bring to a whole complete know-how
which is a strong methodology in computer algebra.

This property of computer algebra, which is typical in mathematics, be-
comes also a property for the computer science itself and it can encourage
successful applications of computers in other areas with poor theoretical ground
works.

2. Algebraic structures and their algorithms. The area of Symbolic and
Algebraic computations [2] has received a wide attention in the recent past.

Many algebraic algorithms have been defined and analyzed.

The success of this area of researches is essentially based on the very
deep understanding of the relations between algebra and computer science. In
fact the proper representations of algebraic data (such as polynomials, power
series, etc.) and of their algebraic structures (such as rings, field, etc.) have
allowed very natural and simple “algorithms driven by representation”. And
all that matter closely links computer science to modern mathematics.

Unfortunately the implications of these results in terms of definition of
general methodologies in computer science are only now under consideration.

Let us present three different ways of looking at integers. And let us also
show how these representations of integers lead to similar representations
for polynomials making a unifying view of algebraic data [3;4].

One classical way to represent integers is the so-called fix radix. An in-
teger # will be written as u=X%"} u, x’ with O<u,<x for all i and u, ,=0,
where x is also a number and it is the base of the representation, and it is
fixed in the computer.

A second way of representing integers is the so called p-adic, or variable
radix. An integer u will be represented, in a similar way, as u=2;‘;“, u; p* with
O<u,<p for all i, and u, ,-40 where p is generally a prime number variable
from one problem to another.

Third is the modular representation, or variable mixed radix.

Here an integer # is mapped into a set of integers #; such that u,=u
mod p,.

Tp{:e values u; are called residues in respect to the set of prime numbers p,,
Ues(Ugy Uyy oo vy Upy)- .

Now, if we look at polynomials we can say that the domain of polynomi-
als has exactly the same properties as integers.

In fact one can simply write polynomial in the classical form f(x)=ZZ _ f x
with f,¢ F, F is a field and 4 is the degree of the polynomial

In the p-adic representation we can write the polynomial as f(x)=ZX%
u(x)p'(x) which essentially is a series representation with respect to an ar-
bitrary irreducible polynomial p(x), usually chosen as p(x)=x—b.

Finally according to the modular representation a polynomial can be map-
ped into a set of polynomials #; (x)

fx)—(ug (x), uy(x),...)

such that «,(x)=f(x) mod p,(x), where p,(x) are irreducible polynomials. In
the past, even if this similarity was known, different programs for different

2]8 \. MIOLA

algebraic domains have been implemented. In fact very large algebra systems
such as MACSYMA [5] and SCRATCHPAD [6] don’t benefit from abstract
properties of general algebraic domains.

In the present time new approaches start to be followed [7;8:9]. The
concept of categories as collections of algebraic domains (for instance the ca-
tegory of integral domains: integers, polynomials) is introduced.

You can build new category, such as field, using other known categories,
such as group.

And also concept of functors as operators which instantiate a given ca-
tegory into a specific algebraic domain.

So vou don't have to write different algorithms for similar operations,
but the powerful structure that you have introduced, with its hierarchical or-
dering, enables you to design algorithms in a very efficient way.

3. A general approach in algebraic algorithms designing. A typical ap-
proach in algebraic algorithms designing is based on the reducibility of a gi-
ven problem to simpler problems.

This reduction is generally obtainable in an easy way for algebraic structures.

Let us consider the problem of computing multivariate polynomials grea-
test common divisor (GCD) [10]:

D(xp -+ X,)=GCD (F(xg, - - - » Xp) G (X0 . . -+ X))

It is well-known (but also very intuitive) that an algorithm for GCD com-
putation can be defined recursively applying the classical Euclid’s algorithm to
porynomials with one less variable at the time. This algorithm comes out
obviously to be exponential in the number of variables.

Let us now map the two given polynomials F and G into two univariate

polynomials F(x) and G(x) by evaluating F and G such that:

F(x)=F(xp byy....0,), G(x)=G (%0 by, ..., by)

for given values b,.
In other words, we do map our GCD problem from the domain Z[xo
.. x,] of multivariate polynomials into the domain Z[x] of univariate po-
lynomials, by the evaluation homomorphism.

Now these two polynomials F and G can be also mapped into other po-
lvnomials using the modular homomorphism.

Therefore we do have now the problem of computing the GCD of poly-
nomials in a domain of polynomials with coefficients which are integers mo-
dulo some given primes p;:Z, [x].

Once we have solved this problem in Z, [x], we do have to come back
to the original domain Z[x, ..., X,). We do that by inverting the two ho-
momorphisms, namely using first the Chinese remainder algorithm and then the
interpolation algorithm,

MATHEMATICS AND COMPUTER SCIENCE : ALGEBRAIC ALGORITHMS 219

What we have done is expressed by the following scheme:

|
:' GCD(F(xg. « - -, X) G(xg, . . ., . X))

in Z [xXg, , ... X,

T interpolation evaluation
| v

GCD (F ix), G (x)) in Z [x]

CRA modular

|
v

GCD (Fp, (x). Gp, (x)) in Zp, [x] l

This approach to the GCD problem is an example of a general procedure
which can be proposed following these steps:

— simplify the input by invertible algebraic homomorphisms

— solve the given problem in a simpler way in the image domain

— reconstruct the true solution in the original domain by inverse homo-
morphisms.

It is very important to recall how this fundamental approach leads to de-
finitions of algorithms with lower complexity. Typically one can reduce the
complexity from exponential to polynomial rates. For instance this is in fact
the case of GCD and factorization problems [11].

This remark contributes to use these kinds of techniques in many other
potential application areas. Besides it must also be underlined that uniform
bounds for a class of algebraic invertible mappings have been established in the
recent past [12].

4. A general approach in algebraic algorithms analysis. A current ap-
proach in algorithms analysis is based on the so-called reducibility a la Karp
[13]. According to this approach one problem is shown to be reducible to ano-
ther, so that any computational property of an algorithm for the second can
be assumed to hold also for the first. And also any improvement of the se-
cond algorithm will be useful for the first.

As far as the algebraic algorithms are concerned this kind of algo-
rithm analysis has been for instance used to show that the algebraic ope-
rations of multiplying, dividing, squaring and reciprocating, for objects with
the same size, are equivalent problems [3].

Hence if we indicate with:

M (n) the cost to multiply two objects of size n,

D(n) the cost to divide an object of size 2n by an object of size n,
S(n) the cost to square an object of size n,

R(n) the cost to reciprocate an object of size n,

we do have M(n)=D (n)=S(n)=R (n).

Let us recall that here an object of size » means an element of an alge-
braic structure (for example an integral domain), for which a valuation or size
can be defined. For instance the absolute value is a size for an integer, or the
degree represents a sijze for a polynomial.

2920 \. MIOLA

It is well known that the cost of multiplying two objects of size n (inte-
gers, polynomials) is n log n [4, 14]. Therefore we say that the above four
operations can be done in the same amount of costs. And we could express
this result by assuming thatall the above operations are at the same level with
a distance from the>ground of » log n

M(n) D(n) S(n) R(n)

Similar approach has” been” followed in other algorithm analysis.

It has been shown by Schonhage [15] and Moench [14] that the
GCD algorithm (of objects of size n) in an arbitrary Euclidean domain has a
cost of n log®*! n, if in the *domain a multiplication of two elements of size
n can be accomplished in®z log? n time. That means that the GCD algorithm is
logn-reducible to a multiplication algorithm. Therefore, in our description the
GCD algorithm has a level higher than the level of multiplication with a di-
stance of log n.

: Moench has also shown that in an arbitrary Euclidean domain the Exten-
dend Euclidean Algorithm (EEA) [4] for solving the equation (given a and b)

as+bt=GCD (a, b)

computing s and ¢ has a cost of log n (M(n)) [14]. Therefore EEA (n) also
has a distance log n from M(n). Besides, the proposed algorithm also compu-
tes the GCD (a, b), therefore we also have that GCD algorithm is reducible to
the EEA.

EEA(n) GCD(n)

log n log.n.
M(n) D(n) S(n) R(n)

g

A generalization of this result, due to Yun [16;17), shows that the so-

called Linear Diophantine Equation Solver (LDES) is,an algorithm equivalent
to the EEA.

A linear dioph antine equation is
au+bv=c

for given a, b, c. We can solve this equation for « and v, with the conditions
size (u)<size (b), size (v)<size (a) iff size (c)<max (size (a), size (b)).

Under these conditions we implicitly also have that LDES (n) is log n re-
ducible to M (n). Thus

MATHEMATICS AND COMPUTER SCIENCE : ALGEBRAIC ALGORITHMS 221

LDES(n) EEA(n) GCD(n)

log n log n log n
M(n) D(n) S(n) R(n)

In log n

Yun has also studied the relations among algorithms for polynomial Square-
Free decomposition (SQFR) and for rational functions integration (RFINT).

A polynomial P(x)=ZX? ;a, x’ in a domain D |[x] is primitive if _the GCD
of all the coefficients a; is 1 in the domain D.

A primitive polynomial P(x) in D [x] is square-free if GCD (P(x), P’ (x))=1.

Then the square-free decomposition of the given polynomial P (x) is P(x)
=II%_| Pi(x), where each P;(x) is square-free in D [x] and they are pairwise
relatively prime.

It has been demonstrated that also this problem is log n-reducible to M(n)
[18]. Moreover this problem is equivalent to the GCD problem [19].

Similarly the problem of integrating a proper rational function A (x)/B(x),
(with A(x), B(x) in D [x]) is shown to be log n-reducible to M (n) [18].
But the equivalence of RFINT algorithm and GCD algorithm is still an open
problem.

Therefore, our diagram can be now completed as follows, where the horizontal
links represent the equivalence of the linked problems.

LDES(n) EEA(n) GCD(n) SQFR(n) RFINT(n)

log n log n log 2 fog 2 log n

M(n) D(n)) R(=)

T

Other similar interesting results can be found in [1]. All these results
allow to define a structure of the algebraic algorithms according to their com-
putational properties. This structure comes from a partial ordering of the algo-
rithms which enables to study and deeply understand their computational and
their algebraic properties in a unified perspective.

Beside that, the proposed diagram (which can be enlarged to include other
known results) immediately underline the open problems.

REFERENCES

1. — Proceedings of | Symposium on Symbolic and Algebraic Manipulation. Comm. ACM, 9,
1966, n. 8.
— Proceedings of Il Symposium on Symbolic and Algebraic Manipulation. Los Angeles, 1971.
— Proceedings of EUROSAM'74. ACM SIGSAM Bulletin, 8, 1974, n. 3.

222 A. MIOLA

N

w

® N o0

10.

— Proceedings of Symposium on Algebraic Computation SYMSAC'76 (1976).

—— Proceedings of 1977 MACSYMA User’s Conference. MIT. Laboratory for Computer Science,
27—29 July (1977).

— Atti del Seminario di Introduzione alla Manipolazione Algebrica. Istituto per le Applicazioni
del Calcolo, Roma, 20—24 March (1978).

— Proceedings of 1979 MACSYMA User's Conference. MIT, Laboratory for Computer
Science, 20—22 June (1979).

—— Proceedings of EUROSAM’79. Marseille,24—26 June. Lecture Notes in Computer Sci.72.

— Proceedings of SYMSAC’81. Snowbird (Utah), August (1981).

. A. Miola. Symbolic and Algebraic Manipulation Today — Systems, Algorithms, Applica-

tions. Report of Universita di Roma, CSSCCA R. 80—10 (1980).

A. V. Aho, E.Hopcroft. J. D. Ull man. The design and analysis of computer algori-
thm. Addison-Wesley, 1971

D. Knuth. The art of computer programming. Vol. 2. Addison-Wesley, Reading, 1974,

R. Bogen et al. MACSYMA Manual. MIT-PROJECT MAC. Cambridge, 1973.

J.H. Griesmer et al. The SCRATCHPAD Manual. IBM Report, Yorktown Heights,
N. Y., 1975.

G.Ausiello, G. F. Mascari. On the Design of Algebraic Data Structures with the Ap-
proach of Abstract Data Types. Lecture Notes in Computer Sci., 72.

R. D. Jenks. MODLISP: An Introduction. Lecture Notes in Computer Sci., 72, 466—480
(also available is revised form as: “MODLISP: A Preliminary Design”, IBM Re-
search Report RC 8073, January 18, 1980).

. R.Jenks, B. M. Trager. A language for computational algebra. SYMSAC 81, Snowbird

(Utah), August (1981).
W. S. Brown (3). On Euclid’s Algorithm aud the Computation of Polynomial Greatest
Common Divisor. Communications of the ACM, 18, 1971, 478 —504.

1. P. Wang, L. Rothschild (22). Factoring Multivariate Polynomials Over the Integers.
Math. of Comp., 29, 1975, 935—950.

12. D. Y. Yun. Uniform bounds for a class of algebraic mappings. S/AM J. of Comp., 8,
August 1979.

13. R. Kar p. Rieucibility among combinatorial problems, complexity of computer computations.
Plenum Press, N. Y., 1972

14. R. Moenck. Fast computation of GCD. Proc. of the 5th Annual ACM Symposium on
Theory of Computing, 1973.

15. A. Schonhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta /nformatica
1, 1971, 139-—144.

16. D. Y. Y. Yun. The Hensel lemma in algebraic manipulation. Ph. D. Thesis, Math. Dept.,
M. L. T., 1973, also TR-138, Project MAC, Nov. 1974.

17. D. Y. Y. Yun. A p-adic division with remainder algorithm. ACM S/GSAM Bulletin, 8,
n. 3, Nov. 1974,

18. D. Y. Y. Yun. Fast algorithm for rational function integration. Proc. of IFIP" 77. Toronto’
August (1977).

19. D. Y. Y. Yun. On the equivalence of polynomial GCD and squarefree factorization problems.
Proc. MACSYMA users’ conference 1977, NASA, Washington D. C.

Istituto di Analisi dei Sistemi Received 4.1.1983

ed Informatica del C. N. R.
Viale Manzoni 30 Buonarroti 12
00185 Roma, [taly

