Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

DISTRIBUTED SYSTEMS AS CONTINUOUS FUNCTIONS
ILIA DIMITROV

An approach to mathematically characterizing distributed systems (DS) is developed in
this paper. It allows to treat a DS as a continuous function from input state histories to
system state histories, depending on explicitly provided synchronization.

The underlying model of DS includes a set of operators, asynchronously and concurrently
acting on shared memory objects. The important to the operation of the DS synchronization,
casuality precedence, etc. relations are abstracted by two functions, called the “read” and
“write”” synchronizers. They are a natural device to handle the behavioural non-determinism
at the level of synchronization.

It is shown that the approach includes as a special case analogous results about me-
ssage-passing (communicating) systems.

Introduction. Recently, much attention has been given to mathematically
characterizing distributed systems (DS) as continuous functions in the style
of Kahn [5]. In this paper his approach is generalized for a much larger
class of DS. Kahn's results concern message-passing systems with determinate
operators, acting as continuous functions from and to mutually independent
sequence domains (histories of communication lines). Keller [6] tried to
introduce in this scheme non-determinism but without great success ([1], also
the discussion on [6] in [2]). Brock and Ackerman develop Keller’s idea that
non-determinism of the “merge” type ([6] and the discussion on it in [2]) has
something to do with synchronization. They introduce in [1] scenarios to re-
present casuality constraints and overcome <“the shortcoming of history rela-
tions” used by Keller. But for some reason they contradict themselves, stating
that “due to the time-independent nature of data flow computation, there are
no casuality relations between items of different input ports, between items
of different output ports, and from output items to input items”.

The last part is not necessarily true and they show it themselves in their
own example that two networks with the same history relation are not sub-
stitutable as components of a larger network. The essence of the example is
exactly that synchronization problems appear when individual items of the
input to a possibly compound operator depend circularly on individual items
of its output. And, once allowing dependence between items of output and
items of input, all kinds of casuality relations between input items and output
items can appear.

Such systems in which there are dependences between individul items of
different histories are not Kahn's systems, i.e. his fixed-point theory is not
applicable to them. To generalize his continuity results, synchronization func-
tions are introduced in Section 1 of this paper, reflecting the dependences bet-
ween individual items of input and output.

The most significant distinction between the model of DS, used in this
paper, and Kahn's model is that only communications via chanels (lines) are

SERDICA Bulgaricae mathematicae publicationes. Vol. 10, 1984, p. 303—311.

304 I. . DIMITROV

allowed in the latter model, while in the former one shared memory is used
for interoperator communications. Certainly, there is a boom in studying me-
ssage-passing systems (communicating systems (4], data flow systems, applica-
tion systems [7], actor svstems [3], etc.), but nevertheless it does not seem
reasonable to squeeze any system into such a model, all the more that the
opposite move is easier (i.e. to model channels or lines by shared memory
with suitable synchronization). Therefore, message passing systems can be
considered as a special case of DS with distributed memory.

1. A model of DS. Let’s consider as an example of DS a man-computer
space rocket control system R, consisting of:

—an astronaut A;

—a computerized onboard control system C;

- a data-gathering system G which keeps record of the rocket’s condi-
tion and its position in space with the help of sensors and which feeds this
information / to a data base B;

—a TV-screen V on which the astronaut A can observe the environment.

The astronaut has access to the data base through a terminal. The con-
rol acts of A and C are sent to the engines for execution and are registered
in B (acting as a shared memory). The way R operates fairly obvious.

Fig. 1. The control system R

More generally, a distributed system (DS) consists of a finite set O={o,,
04 .., 0, of asynchronously and concurrently acting determinate operators;
a set /={i,, i, ...} of input objects with memory, the state of which is chang-
ed only from outside the DS and can be accessed by the operators from O
only for “reading”; a set S={s,, Sy - - . } of system objects with memory, the
state of which is updated by the operators from O and can be accessed from
outside the DS for “reading” (implicit output of the distributed system).

Each operator 0¢O has a set of input objects from /U S (denoted by
domain n°) and a set of output objects from S (denoted by range,). The ac-
tion of each o¢O consists in obtaining information from the current states of
its input objects and updating with the computed results the current states of
its output objects. Concerning the rest of the system, the acts of reading,
computing, and writing, performed by an operator on its invocation, repre-
sent an indivisible elementary act - firing of the operator.

Going back to the control system R (Fig. 1.), the respective domains
and ranges of the operators are:

domain, = {V, B}, domain, {8}, domaing = {/}
range , = {B} range. - { B} range; = {B).

The consecutive states m,, i= l,..., t, of any object m¢/1JS form its
local discrete history &, =(m,, ..., m,,). The length of this local history

DISTRIBUTED SYSTEMS AS CONTINUOUS FUNCTIONS 305

lh,,=t, determines m’ s current local moment. An object may have empty
local history () ({4, =0) or infinite local history (its total history)
(m,, Mg, ...) (L h, = <0). The history A& of the whole system is a map from
the set of objects to their local histories: k(m)=*h,. Also, each operator acts
in its local discrete time, defined by the se-
quence of elementary transitions, performed by

that operator.

The interaction of operators, resulting from |
their asynchronous and parallel activities, mani- 1
fests itself in the order in which they access |
their respective shared input and output objects 1
for reading and writing. This synchronization of (b
real-life activities will be abstracted (modelled)
by two partial functions — the “read” synchro- ©,

©)
O

. i
1]
; ®
| ®

[1] ®

©

/;

nizer r and the “write” synchronizer w:

(Dl) f(O, t. ”l):t’, OEO, teN,
m ¢ domain,, ' ¢N

’ ’ =t’1 ’ t ’
(D2) wo. &, m) 0€0 €N Fig. 2. An initial segment of the
m € range,, t'€N, control system R history

where N={1, 2, ... }.

D1 associates with each operator 0 €O the accessible for reading states
of each of its input objects (state number # in history k(m); h(m)[¢']) in the
t-th local for o moment (on its #-th invocation), ¢=1, 2, 3,... Similarly D2
associates with each operator the accessible for writing states of its output
objects for each invocation.

D1 and D2 will be illustrated by an initial segment of a possible history
of the control system R (Fig. 2).

Fig. 2 models the following particular course of events: The sensor sys-
tem G is turned on and it initializes the data base B(k(B)[l]). The control
system C starts computing the control, using the initial state of B. In the
meantime G updates B with some new information (4(B)[2]). The astronaut
detects some deviation on the tv-screen V(A(V)[3]) and, using the current
state of B, decides to perform a control act. While he is doing all that, the
faster computer C issues two control commands (registered in A(B) (3] and
h(B) [5]), and G updates once more B(h(B)|[4])... This goes on and on until
the space rocket lands safely back on the Earth. Of course, there are sys-
tems intended to run forever (or for indefinitely long time), hence their his-
tories are considered to have infinite lengths.

Having in mind the definitions of r and w (D1 and D2), the described
behaviour of R is formalized by transcribing the arrows on Fig. 2 into the
following partial functions (“read” and “write” synchronizers):

HA, 1, V)=3, w(A, 1, B)=6,
A, 1, By=2,

i
t
1]
i
®
3
© nan Fl e ©
O~}
¥ A€ -.B -G -1

HC. 1, B)=1,w(C, 1,B)=3,

306 1. I. DIMITROV

HC, 2, B)=3,(C, 2, B)=5,

G, 1, =1, (G, 1, B)=1,
(G, 2, D=2, %G, 2, B)=2,
AG, 3, =3, w(G, 3, B)—4.

The synchronizers define a directed graph G,. in the global history space
of the system (O U /U S)XN with nodes (e, f) (where e is either an operator
or an object, and ¢ is the local for ¢ moment) and edges ((e, ?), (e’, ")) bet-
ween all nodes connected by the synchronizers:

ec/JS, e¢€O and r(e, t, e)=t or
ecO, e'¢l|)S and wl(e, t, €)=t
The synchronizers should reflect the physical nature of synchronization.
This imposes the following restriction on r and w: (P1) the directed graph
G, w, induced by r and w (see Fig. 2), should be acyclic.

Another property of w must hold true to exclude non-deterministic states
from the object histories — simultaneous updates of an object are not possible

(P2) VO, 09€0, i, t3€N, wymerange,)range,,,
(@(0y, &y, m)=w(0,, ty m) = 0,=0,& t,=1,).

In this setting each operator 0¢O is considered ready to fire (enabled
when the current (in respect to o) states of all its input objects from domain®
are already produced and when all its output objects from range, have re-
ached their current (in respect to o) states (are ready to be updated). This
will be formalized by the auxiliary function ¢:

t if yme¢domain, r(o, t, m)=Llh(m) &
(D3) ®(0, k)= vm € range, w(o, t, m)=1Lh(m)+1;
0 if there is no such £
Note that /()=0 and that Pl guarantees that ¢(o, #) is always defined

and is unique.
¢(0, #) has as a value the current for o local moment if o is enabled

with £ as a current history. Let’s see now what happens with the control
system R if its current history is:

h(V) =(Vy, V), h(1)=(l,, 1y, 1), h(B)=(B,, By).
Then with the synchronization on Fig. 2:
(A, h)=0, oG, h)=0, oC, h)-1
(r(C, 1, By=1<lh(B)=2 & w(C, 1, B)= Lh(B)+1 - 3),
which means that only C is enabled and it will fire for the first time. When

C fires the history of B will be extended with a new state B; so G will be-
come enabled to fire for the third time.

DISTRIBUTED SYSTEMS AS CONTINUOUS FUNCTIONS 307

2. The Function of a DS.

Let’s define more formally the value domains used by now in the style
of [8]:

—IH =1 — U* — the domain of histories of input objects where U* de-

notes the domain of tuples with lengths ranging from o to <o and elements
from the domain U;
— SH=8 — U* — the domain of histories of system objects;

— H=1IH U SH — the combined domain of histories;

— U — the domain of object states (left further undefined);
—R=(0O—N—1/S)m N’ — the domain of read synchronizers;

— W=(0O—N—S8) — N’ — the domain of write synchronizers; where / is the

set of input objects, S — the set of system objects and O is the set of ope-
rators.
It is already possible to define the domain of transitions of system states:

T=(IHRtW) — SH — SH.

If t¢ 7T then t maps an input object history i, supplied with read (r) and
write (w) synchronizers, into a function F=1(ik, r, w) which performs the
state transition of system objects by extending their histories with the new
states, resulting from the firing of the enabled operators.

If the current combined history is k2=ik|)skh and the operator o is ena-
bled, let’s denote by (%, o, m)e U the state of the object m¢range,, result-
ing from firing o. To produce wy(4, o, m) for all output objects from range,,
o uses the states of its input objects from domain,, defined by the read
synchronizer : h(m)[r(o, ¢, m)].

The full definition of F is:

(D4) F(sh)=[m — sh(m)~m|m¢S], where

_ {(\v(h, o, m)) if 30€O(m ¢range, & 9(o, £)>0),
m= .
() otherwise.

The notation in D4 is from [8].[d— ©(d)|P(d)] is a map which maps
each object d, such that P(d) is true, into ©(d); “~” denotes tuple conca-
tenation. Note that u*~()=u"* for any tuple «*¢ U™

F(sh) maps any object m¢S into its current history sk(m) eventually ex-
tended with a new state (%, o, m) if m is an output object of some enabled
operator o. Note that F is well defined due to the properties P1 and P2 of the
synchronizers.

This, together with the determinism of the operators, makes F determi-
nate, too.

Now it is necessary to introduce appropriate partial orders in the do-
mains U*(<) and H(<):

(D5) for any ¢, g€ U", ¢:<gqy iff ¢,=() or
f‘hsi‘h&‘hl‘]=‘hlll. i=1..., lq;

308 I. I. DIMITROV

(D6) for any hy, hy€ H by T hy iff k=[] or
domh,=dom#h, & ym¢dom £, hy(m)< hyo(m).

D5 orders two tuples if the first one is a prefix of the second one and D6
reduces — to <. The zero-length tuple () is the smallest with respect to <
element of U* and the null history (the empty map) [| is the smallest with
respect to < element of AH. The restriction of &< on /H and S/ is obvious
and will be denoted also by <.

To avoid some notational difficulties, let’s have A(m)-—=¢) if m¢domh
(unlike [8] where &(m) is considered undefined in this case). T

From the definition of U* and from D5 follows that any chain ¢, <g,< ...
in U* has a lowest upper bound (lub) denoted by U g, or [{g i€ N}. So
< is a complete partial order (cpo) and, having in mind D6, < is a cpo, too.

If X and Y are any domains with cpo’s <y and —,, then a function
f: X —Y will be called monotonic if

(D7) VX, Xg € X(x, < xq = f(x1)=y flxg))

and will be called continuous if it is monotonic and for each chain x;<x
<...in X

(D8) AU %)= 0 fx).

Note that the lub U2 | f(x,) in D8 always exists because f is monotonic
and <, is a cpo.

In the approach of Kahn [5] and its variant, presented by Keller in [6],
the crucial point is that the transition function should be continuous (or at
least monotonic) so that it would have a minimal fixed point. The unrestrict-
ed function F, as defined by Keller in [6], page 342, is not even monotonic,
so he somewhat loosely restricts F only on selfproduced histories, starting
from input histories and empty system histories (see also Kahn’s equations
X, in section 3 of [5]).

Instead of restricting the defined in this paper F to the chain [|[=A([])
CFY[)< ... where it is continuous and has a minimal fixed point F*([])
=17, Fi[]). let’s take a more operational view, giving the same results,

and define directly the overall function f of a DS:
(D9) f(ih, r, w)= .'L;J-o F(D-=F%D-

The type of f is (/H R W)—SH.
f is well defined because

(P3) F([D= F([]), i=0, 1,...

which follows from the definition D4 of F (<= is a cpo in SH).

The operational interpretation of D9 is that the result, associated to a
particular input history and particular synchronizers is the history of states,
produced by the operation of the DS (modelled by the successive applica-
tion of F) starting from null system history.

DISTRIBUTED SYSTEMS AS CONTINUOUS FUNCTIONS 309

Note that the transition function F (D4) registers the effects of firing
all enabled operators (fires an operator the moment it becomes enabled). Any

other transition function F, delaying the firing of some operators, will be con-
sistent with F and will be weaker than it in the following sense:

(P4) F*(sh)y=F"(sh), n=0, 1,...

If F is replaced in D9 with such a weaker function F which is fair (i.e. gu-

arantees the firing of an enabled operator after a finite number of selfapplica-
tions) then

flih, r, w)=F*(() =F*()-

3. Continuity of f. Theorem. f(ih, r, w) is continuous in its first ar-
gument ih.

Proof. The following notation will be used in the proof:

— F, is the defined by D4 function for input history ik,

— shk*=FX[]), k=0, 1,... (hence f(ih;r,w)=F([])="U = oSh%);

— h*=ih;|) sh? (the combined history of input and system objects).

First the monotonicity of f will be proved. Let iky, ihq€IH, ihy<ihy. The
proof will be carried out by induction, showing

(P5) hth% k=0, 1,... and
(P6) 2(k), k=0,1,...,

where Z(k) stands for the predicate vys€S(Lsai(s)<!shi(s)=>flihy 1, w)
= sh¥(s)). P6 means that if at any moment the history of an object s is ex-

tended by F, for the greater input ik, and not extended by F; for the lesser
input i#, then s has already reached its full (finite length) history for ih,.
Obviously sh)=sh) and z(o) are true.

Let’s assume that skiCshi and 2(i) are also true, i=0...., n.

Let s¢S.

If Lsh7(s)<lshi(s) then from z(n) directly follows that sh?+'(s)<sh3*'(s)
and that f(ik,, r, w)(s)=Ssh}+'(s)=sh(s).

Let now [sh(s)=Llshi(s) and w(o, t,s)=Lsh}(s)+1 for some o and
some ¢£.

if 0 is enabled to fire for ik,(e(h?, 0)=t¢), then o will fire for ihy, too
(from the properties of the synchronizers and from the inductive assumption:
o(h%, 0)=t). Hence shi+!(s)=shj*'(s).

Let now (k" 0)=t—1, i.e. o stillcannot fire for the combined history of
input and system objects A so shi+1(s)< shi+1(s) in all cases. The interesting
case, however, is when o can fire for Aj, i.e. @(h} 0)=f. This means that
either the history ik,(m) of an input object m is too short for o to fire, or
the history shf(m) of a system object is too short. If m¢/ then its history is
fixed so o will wait forever on the input ik, If, on the other hand, me¢S
then 2(n) prevents m from having its history extended (@(k?, o)< o@(h?%, 0) im-

310 I. 1. DIMITROV

plies I shi(m)< lshi(m)), so o will never fire again relying only on ik,. Hence
f(ihy, r, w)(s)=Ssh7(s).
shptl(s)<shj+l(s) and (Lsh;’+‘(s)<_lsh;+'(s) =

f(ihy, r, w)(s)=shi+'(s)) being true for each s¢S means that shf+'Cshj+! and
Z(n+1) are true. Hence P5 and P6 are true.
From P5 it follows that

fihy, 7, @)= i’go shic .Eo shi = flihg, 1, @),

i. e. f is a monotonic function.

Let now ik, ik, = ... be a chain in /H.

Let ih= U ik, and sh*= | 2 sht.

Vk:j,sh*:slsz will be proved by induction.

she=sh)(=[.

Let’s assume that wi<n3;sh’= shj,.

sh"+!= F(sh") by definition. When F is applied to sk”", only a finite por-
tion i2* of the total input iz is used (there is only a finite number of opera-
tors). Having in mind i2=) jh, this means that there is ik, , such that

ihj<ihy, . and ih*—ih;, . Hence, if F* denotes the defined by D4 function
for the input iat,

Shr! = F(sh™) = F*(sh") = (F(sh™) = F*(sh")= F}, . ,(sh")= F(sh™)
Fjp i (SH™) = (the inducti ve assumption)

Fip o (shi)=(ihy,ihy, , ik, sh™ = sh"

Csh® Csh"
e sh/Hl_sh)

n=
Frap(shy,)=shytt .
So sh*=shf, = U = osh), = flihje 1o @)= U 2, flik,, r, w), which leads, ta-
king the lub) sh*=f(ih, r, w), to

f(G ih, r, w)=f(ih, r, W)= G f(ih,, r, w).
i=0 i=0
From the monotonicity of f directly follows

fl 160 thy r,)0 G f(ih;, r, w) or finally
= (=0

1 A ih, r, w)= U f(ih, r, w).

This ends the proof that f is a continuous function in its first argument.
Let’s now introduce a prefix-like cpo <= in the domains R and of the
synchronizers:

(D10) for any 7y, r, € R ry<<gry iff wo€OymelU S,

DiSTRIBUTED SYSTEMS AS CONTINUOUS FUNCTIONS 311

((wteN r(o, t, m)=ry(o, t, m)) or
(3t* € N(wt=t*r,(o, t, m)=ryo, t, m)) &
(Wt>t* ry(0, £, m)= =0))).

The same kind of definition goes for <, in W, too.

Using the technique of the above theorem proof, it is easy to show that
f is also continuous in its synchronizers with respect to <.

4. Conclusions. The main result of this paper is the theorem, stating
that the function of a DS with shared memory is continuous in its argu-
ments. The only significant restriction on the class of such DS is the require-
ment that their operators should be determinated.

The driving idea in the paper is the synchronization of actions by the
synchronizer functions. They abstract in an elegant way the real-life synchro-
nization and generalize different synchronization mechanisms (e. g. Keller’s par-
tial order of events in [6], Hewitt and Baker’s combined order in [3], the flow
of data in data flow systems, etc.)

The synchronizers serve another purpose, too. Passing them to the DS
function as arguments captures the synchronization non-determinism of the
DS behaviour (the “merge” type of non-determinism). This type of non-deter-
minism is determined by the class of possible (feasible) synchronizers.

If the number of operators, reading from or writing into each object in
the DS, is restricted to one, then the objects can behave like channels (lines)
between operators when a suitable synchronization (ensuring one-way FIFO
sequencing) is supplied. Therefore, the message-passing type of DS can be
treated as a special kind of DS with shared memory, so some of the results
about message-passing systems are reproduced in this paper as a side effect.

The study of structural manipulation of distributed systems with shared
memory (composition of DS and DS with recursion) remains as a future work
on the DS function properties. Another, more pragmatic direction of future
work is the application of the proposed mathematical constructs and properties
in the area of software engineering (e.g. development of software design
verification, etc. techniques).

REFERENCES

1.J. Dean Brock, W. B. Ackerman. Scenarios: A Model of Non-determinate Computa
tion. Formalization of Programming Concepts, Proc. of the International Colloquium
Peniscola, Spain. LNCS, 107, 1981, 252—259.

2. Formal Description of Programming Concepts. Proc. of the IFIP Working Conference on
FDPC’77. North-Holland (1978).

3. C. E. Hewitt, H. Baker. Actors and Continuous Functionals, in [2], 367-387.

4. C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21,
1978, No 8.

5. G. Kahn. The Semantics of a Simple Language for Parallel Programming. Proc. IFIP'74
1974, 471-475.

6. R. M. Keller. Denotational Models for Parallel Programs with Indeterminate Operators,
in [2]. 337-363.

7.R. M. Keller. Some Theoretical Aspects of Applicative Multiprocessing. Proc. Mathema-

tical Foundations of Computer Science '80. LNCS, 88, 1980, 58-74.
8. The Vienna Development Method: The Meta-Language. LNCS, 61, 1978.

SBNIPI *Interprograma” Received 22. 3. 1982
P, O. Box 795, Sofia 1000, Bulgaria

