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AN APPLICATION OF NEWTON POLYGONS
MICHAEL A. GEORGIACODIS

We prove the non-existence of Distance-Regular Graphs with diameters d=24, 25 and
intersection array
. | | .
=¢0 O O ... 0 ...0

k k-1 k—1. . . k=1. . .%

, ¢=1,k and £>2,

by means of Newton polygons.

1. Distance-Regular Graphs. [f I' is a connected graph, and &(x, y) de-
notes the distance between the vertices x and y of I', then number

S, v)={weV(T) | 8(u, w)=h and &v, w)=i},

where V(I') the vertex set of I, is the number of vertices of I' whose dis-
tance from z and v is & and i respectively.

Definition 1.1. The connected graph T with diameter d is distance-
h-regular (where h is a given natural number) if for all integers i and j
(0=, j=d) and for all pairs of vertices uv with 8u, v)=j the number

Sul, v)= Sy (say)

depends only on i, j and not on the individual pair (u,v). T is distance-re-
gular if it is distance-h-regular for all h, 0<h<d.

Theorem 1.2. If T is distance-1-regular then T is distance-regular.

For a proof see [3].

If j is fixed, then the number S, ; counts the vertices @ of I' such that @
is adjacent to u and (v, w)=i, where 8(u, v)=j. Now if w is adjacent to u
and d(u, v)-j, then §(v, w)=i must be one of the numbers j—1,j, j+1; In
other words 81 ,;=0 if iFj—1, j,j+1. We introduce the notation a;,=S,,,
b; -8\ js1. s ¢;=31,-1,;, where 0= /<d, except that ¢, and b, are undefined.

Definition 1.3. The intersection array of a distance-regular graph

[ is the array
e O ooy
I(r): a, a . . .a; .. .a,
a, b,...b,...,
For a detailed treatment of the theory of the distance-regular graphs see
[2] and [3].

In this paper we deal with distance-regular graphs of diameter d- 24
and 25 with intersection array
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= 1 R
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2. Newton polygons. Consider the following polynomial P(x)=a,x"
x4 A X +ay, a,.a,=0 with rational coefficients.

For the prime number ¢, each non-zero coefficient @, can be written in
the form a,—q"im,l, where (m;l)=1, (m,q)=1, and (/,q)—1, i=0,1,...,n

From these expressions of non-zero @, we form the ordered pairs (i, &)
and plot them on a rectangular coordinate system (no points correspond to
zero coefficients).

Using these points we construct the Newton polygon of P(x), which is
the convex line enclosing all the points from below. For these polygons
Dumas [4] has proved the following.

Theorem 2.1. The polygon of a product is obtained from the poly-
gons of the factors by joining their sides end to end according to nonde-
creasing slope.

For example, for the prime 3, the factors x2+ 3x+9, x*—3x+27 have
the polygonsshown in Fig. 1 and 2, respectively. These polygons are then com-
bined in order of non decreasing slopes to form the polygon shown in Fig. 3.
This polygon corresponds to the product (x?+3x+9)(x*—3x+27)=x"+3x*
+6x3 4 18x2+ 54x +243.

Corollary 22. If the polynomial P(x), with rational coefficients is a
product of quadratic factors, over the rationals, then its Newton polygon is
combined of sections of (horizontal) length 2. These sections are flat or
have slope 1/2 an integer.
| l

3+ 3

{ '\ 1 1 \
1 2 3 1 2 3
Fig. 1 Fig. 2

3. The main theorem. Here we prove that the distance-regular graph
with intersection array (1.4) and diameter d—25 or 25 does not exist. The
proof is based on a theorem due to Bannai andIto [1] and it makes use
of the technique of Newton polygons [4]. We ommit graphs corresponding
to ¢=1 or £ and k—2. These graphs have been studied in [2; 3].

Definition 3.1. Following Biggs (2, ch. 23] we define h=k—1 and
e—~c—1.We alsodefine the polynomial H Y )=(Y—2)Hus (Y )—Ha_ oY)+ M(Y),
d ~-2,where H(Y)=(k—c)%, H, = h?Y —hc?*, M(Y)=2[h(c—1)Y +(h—c+1)*—hc?).
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Theorem 3.2. Suppose that a distance-regular graph with intersection
array (1.4) and diameter d exists, then the roots of the corresponding poly-
nomial H/LY) are all rational or quadratic. (For a proof of this theorem
see [1, th. 4]).

~
s 4
S
=
2 3+ *
powers of x \
2 - *,
1+ \4-
] ! | \
1 2 3 4 5
Fig. 3

Definition 3.3. /f n is an integer, then the order of n, written ord (n),
is the largest number j such that 2/ divides n.

Definition 3.4. We define r—ord(k), s=ord(e), u=ord(h—e),
v=ord (h+e), w=ord(e+1) and LAY )=2"7H/Y), where p-=min(r, 25s).

Lemma 3.5. If the distance regular graph with intersection array | and
diameter d-—24 or 25 exists then for every odd 0, ord H (8)=8+p.

Lemma 3.6. Hy(l)=(h—e) and Hy(1)=h2—h(e+ 1) (For a proof of
the above two lemmas see [5, Lemmas 4.4 and 4.5].)

It has been proved [5, ch. 4] that

d =25 is impossible unless r>2s=0,

d =24 is impossible unless 2s>r>0 or r=s5=0.

Call the above graphs T';, I',, respectively.

Theorem 3.7. The distance regular graphs T, and T, do not exist.

Proof. Suppose that I', or I', exist. Then Lemmas 3.5 and 3.6 gne:
that 2u=>8+r when d=24, min(2r, r+2w)=8+2s when d—=25. Also from
[5, ch. 2] we get that for =25 or 24 and V=2+1

Y Y (z+1)82'%, r—=s5=0 o 2
A=) 1y 25550 {mod 2.

r>2s=>0

Thus in the polynomial LAY ), d=24 or 25, the coefficient of 2™ for any m
such that 0<=m--16 is even while the coefficient of 2'¢ is odd. Thus for the
prime 2 we have a family of Newton Polygons with parameters r and s that
have the point (16, 0) in common. Now by Theorem 3.2 the polynomial
LAY), d=24 or 25is a product of quadratic factors over the rationals. Thus
by corollary 2.2 the non flat sections of the relevant Newton Polygon will
have slope greater than or equal 1/2 an integer.
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Thus the coefficient of 2 will have order greater than or equal 1/2.8=4.
Now bv computing coefficients we get that the actual coefficient of 2% is

3-[10505 h? — 407 h(e2+1)-- 5716 €*] if d 25,
3.[5716h(e2+ 1)+ 43722+ 407 (h? —€?)] if d - 24,
but for d -25 the orders of the terms of the coefficient of 2% in Ly (Y) are

| 2r—2s, r—2s, 2 when s+0,
() 2r, r+1, 2 when s-=0.
Let s+0. Then w=ord(e+1)=0 and min(2r, r+2w)=8+2s hence r=8+2s.
Thus by (1) we get that order of the coefficient is 2. Let s=0. Since r=1
we have that the coefficient is again of order 2. Finally when d-24 the or-
ders of the terms of the coefficient of 2% in L,,(}) are

2, 2s—r+2, u+v when 25>r>0,

3, 2 , u+v when r—-s=0.
Now since 2z - 8+r we have that u =4 for any r=0 hence u+v>2. Thus
the coefficient of 2% in both Lo (Y ) and L,y(Y) is not divisible by 2% This
proves the theorem.
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