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ON THE L DISCREPANCY OF SOME INFINITE SEQUENCES
PETKO D. PROINOV

In the present paper we consider the problem of finding infinite sequences of points in
s-dimensional unit cube FEs=[0, 1|5, the L2 discrepancy of which has the best possible order
(tending to zero). We solve completely the problem in the case s=I1 by constructing infi-
nite sequences of points in E=[0, 1], the L2 discrepancy of which has the order O(N—Y(log N)!72).
In the case s=2 we reduce the problem of finding infinite sequences in Es, whose L? discre-
pancy has the order O(N-1(log N)s2) to the problem of finding the so-called points of con-
stant type in RS,

1. Introduction. For s =1 let £°=[0, 1] be the s-dimensional unit cube.
Let X={a,}¥_, be a finite sequence of points in E°. Forevery y=(yi,... ¥y
in £5 we put D(X; v)=N"TA(X; ¥)—Y, ... Y, where A(X; y) is the number
of terms of X lying in the box [0, y,)X ... X[0, v,).

The number T(X) =([z| D(X; v) 2dy)'? is called the L? discrepancy of X.

Now let o={a,};>, be an infinite sequence of points in E°. For every
natural number N we form the finite sequence oy {a,}y ,, where a(k=1,... . N)

are the first NV terms of o, and put 7,\{(o)=T(c,).

It is known (see [l]) that the sequence o is uniformly distributed in E*
if and only if limy_.. 7 y(c)=0.

Niederreiter (see [1]) proved that for any infinite sequence o in E°
we have

(1) TpA(6)>c(s)N~'(log N)*”2

for infinitely many natural numbers N, where ¢(s)>0 is an absolute constant
depending only on s.

It is not known whether the estimate (1) has the best possible order.

Halton [2] and Sobol [3; 1] construct infinite sequences o in E° for
which 7 (0)=O(N"'(log NY).

We shall dwell more fully upon the one-dimensional case.

Let a be any irrational number having a continued fraction with bounded
partial quotients. From Ostrowski’s studies [5, p. 93] follows that for the
sequence

(2) o=({a}, {2a}, {3a},...)
in £=0, 1] holds the estimate
(3) T\0)=0O(N"log N).

(Here {a} denotes the fractional part of a.) Niederreiter [I] showel that
the estimate (3) is the best possible for the sequence (2).
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4 P. D. PROINOV

Later Van der Corput [6, Theorem 4] constructed another sequence o
in £ for the L* discrepancy of which the estimate (3) holds, too. Haber [7]
showed that the estimate (3) is the best possible one for the sequence of Van
der Corput as well.

In the present paper, in the case s-—~1, we construct infinite sequences
o in £ for which holds estimate

(4) T \{(0) = O(N—(log N)12).

It follows from (1) that the estimate (4) cannot be improved for any infinite
sequence in £. Thus we prove in particular that for s=1 the estimate (1) of
Niederreiter does not admit an improvement.

In the case s=2 we reduce the problem of finding infinite sequences

G in E° such that

(5) Tx(S) = O(N! (log N)*7?)

to the problem of finding the so-called points of constant type in RS,

We shall remark that the main results of the present paper (Theorem 3
and Theorem 4) are published without proof in [8].

2. Notations. In this paper we shall make use of the following notations :

We shall denote the set of all real numbers by R, the set of all integers
by Z, and the set of all natural numbers by N.

For a real number x, we use [x]| to denote the integral part of x, {x} to
denote the fractional part of x, and |x| to denote the distance of x from the

nearest integer. Thus x = [x]+{x}. |x|[ =min({x}, 1 —{x}).
For an integer m, we write m -~ max(l, m|).
For a lattice point m —(m,, ..., m,)in Z°, we define m | - |m, + ...+ m,|

and R(m) - m, ...m,.

For u—=(uy, ..., ug) and B (B,,... B, in R let (u, B) denote the stan-
dard inner product, that is (u, B) =« + ... + u,B,.

For a finite set M, let | M| denote the number of elements of M.

For every function f Riemann-integrable in £°,we define | £, ([, f(x) 2dx)' 2.

3. Infinite symmetric sequences. First of all we shall remind some of
the definitions given in [9].

Let X {a,}¥ , be a finite sequence in £% and let x (x,, ..., x,) be a
point in £°. We say that the point x has a multiplicity p(O-<p-_s) with res-
pect to X, if exactly p terms of X coincide with x. The sequence .X is called
a symmetric one, if for any point x - (x,, ... x;) in £° all points of the type

(6) ()", T+ (—1)5xy)

have one and the same multiplicity with respect to X, when t,,... 1, take
independently the values O and 1.

Let X {b,,}‘,",_,l be a symmetric sequence in £°. We say that the sequence
X is produced by X - {ai 1 if M -2°N and if the following holds: if a point
x=(xy,... x;) is a term of the sequence X, then each point of type (6) is a
term of the sequence X, where T, ... T, take the values O and 1.
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Now, we shall define the notion symmetric infinite sequence. Let 6= {b,}x—1

be a infinite sequence in £°. We shall call the sequence ¢ a symmetric one if
for anv natural number n the finite sequence

(7) b(n —1ip+ 1 b(’!’*l)l"f‘l‘ =y bnp’

where p—=2° is symmetric.

Every point x in £ can be regarded as one-term sequence, so that every
point x in £° produces as least one symmetric sequence in E£¥, consisting of
p=2° points. Conversely, every symmetric sequence in E° consisting of p=2°
terms is produced by anv of its term.

We shall say that the symmetric infinite sequence o ={b,}s—: is produc-
ed by the infinite sequence o= {a,}; . if for any natural number n the finite
sequence (7) is produced by the point a,.

Obviously, every symmetric infinite sequence in E° is produced exactly
by one infinite sequence in EY, and every infinite sequence in E* produces at
least one symmetric infinite sequence.

Lemma . Let o be an infinite sequence in E°, and let n and N be
integers with 1<n<N. Then NT(c)<nT ,(c)+N—n.

Proof.Let 6={a,); ,. For every natural number N we form the finite
sequence oy={a,}Y |, where a, (k=1,..., N) are the first N terms of o. For
every Y =(Yy - - v,) in E5,we put Ay(v)=A(cy; ¥). Dp{(v)=D(oN: ¥) and V(y)
=9,...%, Ihen

® TA0)=|| DY) [l

Let now n and N be given integers with 1=n=N. Obviously Ax(Y)
= A,(v)+ p(y), where the function p(y) satisfies the inequality

9 0=p(r)sN—n.

It follows from here, that

(10) NDp(Y) = Ap(Y)— NV (1) = A (1) —nV () + g(v) = nD(v) + (1),
where

(11) g =p()—(N—mV(¥).

Taking into consideration that 0=<V(y)<1, from (9) and (11) we conclude
that

(12) q(Y)|=N—n
for every point y in E°.
Now from (8), (10) and (12) we get
NTp(0) = nD (1) +q(0) | o= || Da¥) [+ | g0 [l = 1T o(0)+ 1191 2o

=nT ,(0)+N—n.
lLemma 1 is proved.
Theorem 1. Let o—{a,) ., be an infinite sequence in E* and let

Gf{b,};" \ be any symmetric infinite sequence in E° produced by o. Then
for every integer N -2°
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312 5 1

(13) TM@)=(c(s) = (Rim)y2| L L eomitmoapy "y 200
m >0 9 p=1 | ‘

where the outer sum is over m¢Z* with \m|>0, qg=[N/2°], and
(14) () (3/4 m2)(1 —2—+143-),

Proof. We put n=g2*. It is obvious that the finite sequence c,={b,}i—,
which consists of the first n terms of the sequence o is produced by the
finite sequence o,—{a,}? , which consists of the first ¢ terms of the sequence
c. Therefore (see [9, Theorem 1])

(15) T,,(g): T(gn) ~(c(s) X (R(m))2 b Z(I enilm, a,) )12
| m >0 9 r—1

where the constant ¢(s) is defined by (14). Since ¢—=[N/2°] then ¢2°</
<(g+ 12
and therefore 1=n--N and N—n=2°-1.

From Lemma | we have NT (o) ~nT(6)+N—n— NT (o) +2°—1 or

TN(‘&)(_:; T ,(0)+(2°—1)/N. From here and from (15) we obtain (13). Theorem 1
is proved.

Theorem 2. Let a=(ay, ..., uy) be a point in RS with irrational coor-
dinates and let o -{a,}; , be the infinite sequence in E° defined as follows

a, ({a,k), ..., {ak)), k=1, 2, ... Suppose that o is any symmetric infinite
sequence in E° produced by o. Then for ewvery integer N ~2°¢

(16)  Ta(0)— gt +(c(s) T (Rem)~2min(l, (2q| (m, ay|)~2)'"2

m
Proof. It is well known that for every non-integer x the following esti-
mate holds | X7  e?™** - —min(q, | Ir I)v Whence we obtain

g A \ . 4
T eriim.ay | : | X erimwk —min(l, (2¢g| (m, ay|)1).
k1 k=1

From here and from Theorem 1 we obtain (16). Thus Theorem 2 is proved.

4. Points of constant type and lemmas. Let «=(a,, ..., a,) be any
point in R°. We shall say that the point a is a point of constant type if there
exists such positive constant ¢ ¢(a), that the inequality

(17) R(m)| (m, @) ¢

is satisfied for every lattice point m =(m; ..., m,) in Z° with m : (0, ... 0).

We have given another definition in [8] for a point of constant type, but
it follows from [10] that the two definitions are equivalent.

It is well known (see for example [11, p. 33|) that the point « in R will
be a point of constant type if and only if « is an irrational number having a
continued fraction with bounded partial quotients. So, there exist in R infini-
tely many points of constant type. lowever, it is not known whether there
exist points of constant type in R if s -2. In all probabitity there exist such
points in R* for any dimension s 1.
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Let r=(r, ..., r,) be a point in N° and let a=(ay, ..., o;) be a point of
constant type in R®. We introduce the following notations
(18) M(r)y={mezZs:2"i'=m; <2'i, j=1,... s}
and
(19) d=d(r, a)=c/2/"],

where c=c(a) is the constant of inequality (17). We remind that |r|=r
+ ... +r,
Let % be a natural number. We put

(20) My(r, a)={meM(r):kd<|(m, a)| <(k+1)d}.

We shall remark that for a given &, r and a the set M,(r, a) can turn
out to be an empty set. Besides, it is obvious that for arbitrary &, r and «

the point 6:(0, ... 0) does not belong to the set M (r, a).
Lemma 2. Let a be a point of constant type in R°. Then

(21) Z:= |J M(r)
rf Ns
and
(22) M {0} = E. My(r, @).

Proof. Let m=(m,., ..., m;) be a point in Z°. Since m;=1 (j=1,..., s)
then there will exist such numbers r,¢N (j=1,... s) that

(23) 2T = m; < 274
We put r -(r,, ..., r,). From (18) and (23) it follows that m ¢ M(7). Therefore
Z° |, NsM(r). Since the invers inclusion is obvious, then (21) is proved.

Now let m¢ M(r) and let m*O Since a-—(ay, ..., a,) is a pomt of con-
stant type in RY, then from (17), (18) and (19) it follows that |[(m, a)| =d.
Consequently there will exist such a number 2¢ N that kd<= (m, a)| <(k+1)d,
but according to (20), these inequalities mean that m¢ M (r, a). Thus we prov-
ed that

M(ry~ {0} = 'Qle(r. a).

It follows from here that the equality (22) is true, since the inverse inclusion
is again obvious. Lemma 2 is proved.
Lemma 3. For every x, y¢R we have

(24) x|l =yl =min(llx+y |l [|x—yID

Proof. Since the function | x|| is even and periodic with period 1, then
without loss of generality we can assume that x and y belong to the interval
[0, 12]. Suppose, for example, that 0= x--y-<1/2. Then the equality (24) can
be written in the form

(25) v-x=min(|x+yll, y—x)
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If Of;x+yvgl 2, then | x+y| =x+,v\,y—x. Therefore (25) is satisfied.

If 12 +y-1, then [x+y! =1 —(x+y) =y—x and therefore (25) is
again %msfled Lemma 3 is proved

Lemma 4 Let a=(ay., ... «a)) be a pomt of constant type in R*. Then
[ My(r, a)| 251

Proof. Let 2 =d/2°. Obviously the set M,(r, a) can be presented as an
union of the following (2° in number) mutually non-intersecting sets:

(26) MAr, a)y={meMy(r, a):kd + jh=| (m, a) | <kd +( j+ 1)h},
where j=1, 2,..., 2° Consequently, for proving the lemma it is sufficient to
prove that MY(r, )| <2 for every j=1, 2,..., 2°. We shall prove, that if
MP(r,a) =D then  MY(r, a) =2.
Let m¢ MY(r, a). Since the function || x | is even then the point —m =(—m,,
, —my) will also belong to MY(r, a) and therefore

(27) {m,—m}=MY(r, a).
We shall prove that we have here, in fact, an equality. Let us assume
that m’=(m;, ..., m)e M{X(r, a) and m’'==+m.

Since m and m’ belong to MY(r, a) then they belong to M(r), too. Then
(28)  R(m+m") 71;11;_-77Z Cemy m;<(7nl+r_n;) - .(r_r_ls+;1‘;)<‘2‘2 a

From the assumption it follows that m+m’ ia Now, from (17), (28) and (19)
we obtain

(m, oy =(m', &y = | (m+tm', a)| =c/Rm+tm')>c/22 " 1=d/2°=h
From here and from Lemma 3 it follows that

29) Him, ayll — [ ¢m!, ay|l ! >nA.

But since me¢MP(r, a) and m' ¢ M{(r, a) then from (26) we have kd+ jh
= |(m, ay|| <kd+(j+ 1), as well as kd+ jh=|(m’, a)||<kd+(j+ 1)k There-
fore | |(m, a)| —|//m’, a)|'|<h which contradicts the inequality (29). The
contradiction we obtain proves that in (27) we have an equality, that is
| MP(r, a)|=2. Thus L.Lemma 4 is proved.

Lemma 5. For every real number a=1 the following inequality holds

T 1/k2< 2/ a.
k>a
Proof. Obviously a<[a]+ 1=2[a]. Hence
| 1 Tdx 1 2
T o= Y oS [l
k>a B kopa B2 |.;’; x? [“|< a

[Lemma 5 is proved.
Lemma 6. Let v be a non-negative mteger Then for every real number
=1 the following inequality holds
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kY a®
s K<
k>a < <

where c(v)>0 is a constant depending only on v.
Proof. It is easily proved that for every natural number » holds the
inequality

where c,(v) is a positive constant depending only on v. This inequality can be
proved by induction on v using the equality

oo v+1

x = x" n
;.f 2* '0g2! o¥ 4% * Froge”

v+1

It is easily verified that the function f(x)=x"/2* for x=v/log2is adecreas-
ing function. Consequently, for every natural number n>v/log2 we have

kY = x" n"
=23 =[5 = -0 °
T s _J oF: dx<=c,Vv) >

By an appropriate increase of the constant ¢,(v) we find the constant co(V)
such that the inequality

« k\v' ( nV
rp=~ —3=0Cq A
" k>n Qk 2n

is to be satisfied for every n¢ N. Hence we obtain

S la]” a*
R _zk_éc’(") far <CaVy e = €(V) 55
where ¢(v)=2cy(v). Lemma 6 is proved.
5. Precise estimates for the L, discrepancy of some symmetric infinite
sequences.
Theorem 3. Let a be a point of constant type in R° and let o—={a,;_,

be the infinite sequence in E*defined as follows a,={ ok}, ..., {ak}), k=1,
2,... Suppose that o isany symmetric infinite sequence in E* produced by o,
Then the L? discrepancy T, (o) of the infinite sequence o satisfies the es-
timate (5).

Proof. Let N==2% and
Sy~ = (REm) *min (1, (V] (m, a)])2)

Taking into consideration that ¢(s)<<1 and ¢=[N/2°] (and consequently 2¢
>N/2%) from Theorem 2 we obtain

(30) TA(0)<<25(Sp)' 2+ (25— 1)/N-

So we have to estimate the sum Sj.
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Using Lemma 2, as well as equalities (18) and (20) by which the sets

M(r) and M,(r, a) are difined, we make the following transformations

(31)
Sy= ZZ(R(m))‘?min(l,(N (m,a) )2)= X X (R(m))2min(1,(N|(m,a)|)™?)

r € Ns m¢ M(r)

m| >0 |m| >0
—02 ¥ 2-270 X min(l, (V| (m, a) )?)
r i Ns mé M(r)
|m >0
=28 3§ 2-2 ¥ I min (1, (M| (m. a)[)72)
r £ Ns k=1 m¢ Mk(r. a)

—o% x 9=/ S min(l, (Ndk)™?) £ L
r ¢ Ns k=1 mf Mk(,' a)
From Lemma 4 it follows that S, .« 1==2°*'. Taking that estimate

into consideration, as well as formula (19) by which the quantity d=d(r, a) is
defined, we obtain from (31)

| = . 22 r|
(32 Sy=2¥+ I S min(l, —5xsm—)
) N F NS 22]! i ( (2N2k>
“ 1 S ) 22l
=c(s, a),(_N\ 7 = min (1, 55 )

where we have put (s, a) =2%* max(l, 1/¢®). Let us remind that c=c(a).
Further on we split the outer sum in (32) into two sums: over all

r=(ry..., r)e N* with 27 <N and over all r—=(r,...,r,) € N* with 2" >N,
Then we shall obtain from (32)

) R 22!
(33) Sy—c(s, @) T X min (1, gz )
r 2 k=1
2 N
1 o 1 2\ r| )
bo(s, a) X : Y min ( T
)2 , ~ 22!’\ hl N2k2
£ oo 2r
c(s,a) « | . w“ 2
= =K < pX +c(s, a) X — X min (1, <55 )
N2 P k2 ( )2"‘~-N o2 Ty N2k2 )
[et 217 >N. Then from lL.emma 5 we have
S 22 . y 2V
. Y omin(l, ) ! 1+ X _
({4) k1 N2k2 e 2171 oIl N2k2
N N
N 92|7]| 1 o'r|
- - Y 3 T
R N TR Y
A>"

N
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From (33) and (34) we obtain

2 (s, @) 3e(s, 1
(35) sv=g G I 1+ 250 3 o
27=N 27IS5N
For the first sum in (35) we have
(36) T I=( X 1) =(loge) =cy(s) (log VY,

2 "§N 2’;’3‘

where ¢,(s)=(log 2)—".
For the second sum in (35) we make the following transformations and
use Lemma 6

ST S S 1 v 1 S —~ v ksl
(37) 2z = X z = 2 T 1= I -
2lrl 2|rt Lok - 2k
2l7ls v RN ri=k k>logs N |rl=k k>logeN

< co(S)NT(logy N ~t=cy(s)N~(log Ny’ 1,

where c4(s) is a positive constant depending only on s.

From (35), (36) and (37) we obtain Sy— O(N-2%(log N)*). From this esti-
mate and from (30) we finally obtain the estimate (5). Thus, Theorem 3 is
proved.

Let @ be a noninteger. It is obvious then that the one-dimensional infinite
sequences

(38) o=({a}, {—a}, {2a), {-2a}, ...)
and
(39) o—({—a} {a}, {—2a} {20},...)

are symmetric. They are produced by the sequence (2). Then from Theorem 3
in the one-dimensional case we get the following assertion :
Theorem 4. Let « be an irrational number having a continued fraction

with bounded partial quotients. Suppose that the infinite sequence ¢ in E
[0, 1] is defined by (38) or (39). Then the L? discrepancy T{(c) of the
infinite sequence o satisfies the estimate (4).
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