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SPLINE INTERPOLATION OF BOUNDED FUNCTIONS
IN THE CLASS L,[0, 1]

PETAR G. BINEV

We shall prove the following estimates of the error for interpolation by splines with uni-
formly spaced nodes of order r of bounded l-periodic functions f¢ L0, 11: [ f=s,n; [0.1]
p

<G, (f3 Ay o, and for  functions fe WO, 1) fio— s(,i_);,‘.le|<1,|'f-:Cg(r‘ vr !

(v) . )
@, (f ’”Lp[m] when r=zv=1 and i=0, 1,.... v.

The functions to be investigated are bounded, l-periodic and belong to
the class L,[0, 1], 1=p=-o. For every function f we define the spline s,x(x)
+5,4(f; x) of order r with uniformly spaced nodes at the points x;, —ik(i==0.
+1, ©2,...; h—=1/N) with the properties:

1) s,n(x;+2h)=f(x;+2zh) for every integer i, where z=0 if r is odd or
z=1/2 if r is even;

2) sb) is bounded.
Ag far as sup, { A f(x,+zh)|} is bounded together with f(x), this spline ex-
ists and is unique [, p. 121].

To estimate the L,-norm of the error of this spline interpolation we use
the moduli:

o (f3 R, =sup{|[ A f(.) [l poar: 0=8=<h},

W fo x5 h)=sup{[ A} f(¥) | . y+kRS €[x—kh/2, x+kh/2]},
ol fi )y =llo (f .5 h) e

Wi R, =l olfi s Bl -

The last modulus is introduced by Bl. Sendov and P. P. Korovkin (in
the case k-—=1). The main properties of this medulus and other information
about it can be found in [2].

A.S. Andreev, V. A, Popov [3] proved the following estimate of the
error in the case r=23: | s, —f|]Lp-’(,‘t,+,(f: h)Lp.

In this paper we obtain this estimate for arbitrary r.

Theorem 1. There exists a constant C\(r) depending only on r such
that for every bounded I-periodic function f¢ L0, 1] the inequality | s, »—f
<C\(nt, . (f; h),,p holds. !

From this theorem using the method proposed by A. Andreev (4] we
obtain the following
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Theorem 2. Let 1=v=r and f¢ W}[0, 1] be bounded and 1-periodic
function. Then for i=0, 1,..., v

SO—=s, |'Ln§C2(r, DL AnCASE G AN T

with a constant Cy(r, v) depending only on r and v.

In 1 we prove some lemmas and in 2 and 3 are given the proofs of
Theorem 1 and Theorem 2, respectively.

Everywhere C(.), K(.), L(.), M(.), U(.) are constants depending only
on the arguments marked in the brackets.

1. Some lemmas. Lemma 1 [5]. Let my<m< ...<m,; b,=0(@{=0, 1,
... r). We denote by gq, the polynomials of r-th degree, for which q{m))

=(—=1)**b, for 0=j<i and q{mp)=(—1)y*b; for i=j=<r. If the polyno-

mial p of r-th degree is such that the mequahttes p(m,) |<b; (j=0,1, ,r)
hold, then | p(x)|=gd{x) for x€[m;, ,, m;, i~=1,2, ...

Lemma 2 (Whitney [6,7]). Let f be a bounded function on the in-
terval |a, B] and let p be that polynomial of r-th degree which interpolates
f at the points a+i(B—a)/r. Then

f)—plx) = kAo, (f 585 B2 for xefa, B

Let g, be the polynomials from Lemma | for m,=a+i(B—a)/r and b, =1.
We set L(7)= max{max {g(x); x€ [m,_y, m;]};i=1,2,..., r}. It is easy to
see that L(r) =\ 2’. Comparing Lemma 1 and Lemma 2 we get the following
assertion.

Lemma 3. For every bounded on the interval |a, B] function f for which
fla+iB—a)r)| =M, (i=0, 1,..., r), the following inequalitiy is wvalid:

f(x) <Ko,y f. ‘TP P ML) for xela, Bl

r+1
Lemma 4 [l, p. 25]. Let the following infinite system be given

2p
(1) Sbeiim—d, (m=0, *1, +2,...)

s=0
where z, are unknown quantities, <up,,, |d,|< o and by, >0.If all roots of the
characteristic polynomial Py(z)—X* b2 are negative and difjerent. P2
=2%Py(1/2) and Pay(—1)+0, then (1) has an unique solution 20 — a,
dm—pix. Moreover

k—oc

) S Ja=|Pu(—1)|
R=—o0
(i—t)”
We use functions B,(f)- (r+l) I+ (l)“))+. where o(x)=x(x—1)...(x—r
~1) and x’, =x” if x=0 or x7 =0 if x<0. Let function f be defined on the

real axis and o, f; #) be bounded (it is sufficient for the uniqueness of
sa(f; x)). We note

SPLfi x)~ B+ f (i)~ T BL [ —2h),
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where x, =ik and 0-—z< 1. Let s be a spline of r-th order and with nodes x,.
It is known that there exist constants 7y, such that for v ¢ [xe_,. Xe4,] the
equality

{
5(,")j ) YIBV(

=k

tl

—V

v )

holds true. From here and from the fact that B, (‘;'V—):O for ¥y € (x, Xi4,41)
we obtain

v —x—jh

r r R+j+r
S B(j+2)s(x+jh)y= X B(j+2) = vB, (F——)
Jj=0 0 l=k+j

r R+

J . x—x LT x;—x - jh+zh
= T2 BU+ BCT)SE BOY, ) 2 v =)

v,B, (=5 = X B, (S5 )s(x—2h).

=i {=—o0

k+r i+r+1
N
-

= IB, (%X
B, ()

From that equation it follows in particular that Spl(s, »(f: x); x)=0. Denot-
ing g(x)=f(x) -s,. A f; x) we receive

SpL(fiX)=Spl(g: x)= £ BLj+2)elx+jh)

Let x=x,+y, where y¢[0, 2], and let z,=g(x,+y). From the last equation
follows the infinite system

(3) j":OBr(j"}'z)zH-/:Splr(f; X+ ¥).

J=!
In [1, p. 123—126] is proved that the characteristic polynomial with coeffi-
cients (z=0 if r is odd; z=1/2 if r is even)

r4:1 ) r+1 N r+‘|(’,+1)! .
SRy Gms gy, = DY Gy 2y —r! Bls+2
b /:n( 1) ( j)(j=s+2)y, 2z, o)/ s+2), =r! B(s+2)

satisfies the conditions of Lemma 4. On the other hand,
sup | Spl(f: x) =sup Spl(g; x)|={ Eo? B,(j+2) | }K(r—o,g: h)
x x J=

<COY{olfi +h"| s/hllc}< =
and therefore we can apply Lemma 4 to the system (3), which gives
glx, +V) kx aySpl(fi Xi—pin + V)

where p-—[r/2]. Changing x=x,+y we receive .
Lemma 5 For every function f, for which o/ f: h)< <o the equation
f(x)—sn(fs x)-——h Y a,Splfi x+(k—ph)

——Q

holds
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2. Proof of Theorem 1. We use Sp/(f; x) for x=x,+1lh/r(l=0, 1,...,
r—1). Because of B,(x)=0 for x ¢(0, r+1) we have

r i+r+1
SPLAS X+ ki = X Bj+2)f Gt (Ut RN — S B j—i—1r) [ (x/~zh),
Jj= =i+1
i. e. Spl(f; x;+lh/r) is a linear combination of f(x,+mh/r) for m=0, 1,...,
r’+r—1.0On the other hand, it is zero for polynomials of r-th degree and there-
fore there exist constants z,, such that

ri-2
Spl(f 3 xi+lhj/1)= §Ouz mAL 5V f (X, + mh/r).

Let us note U,(r)=max{ u;m ;{=0,1,...,r—1}. From Lemma 5 and (2)
we obtain
Sfx;+Lhir)—s, m(x;+Lh[r)| —-‘k‘l a, Spl(f; x,+lh/r+(k—p)h)|
oo rL‘2 )
= X Ja, X UynlA ’+’f(x,-+,,_p+mh,'r)j
kR=——co m=0
= i h h h
;k:m ay m.‘io U (ro, (f, Xise—p+ L"; + 5 —r—).

Denote the last expression by M and apply Lemma 3 in the interval [x,, x|
for the function g(x)=f(x)—s,(x):

| F () =5 n(2) | = K)o, fo X+ 55 2+

Zh
L(rk)——: akl J‘ Um(’)mr+l(f X —+(k pJ_—J_“ )h "‘)\ K(f)('),+l(fA 'r+1
= h
+L(’) -\-‘ ay! -} (70, 1( f x+(k—p+7)h; r +r+l)

Obviously the upper inequation is valid for x € [0, 1]. After recciving the
L,-norm on both sides and applying the triangular inequality we obtain

oo -2
| | . N N h
|| f=Srn lle o, W=K(r)t,a(f; w7 ])L +L(r) Al- |ay m.\i Un(n)t,4.(f ",’ +-'——,_H)Lp

2

Ay -\— Un(N} ta( S5 T)Lp-

AK(r) L(')
3. Proof of Theorem 2. [Lemma 6 [4, Lemma 3] Let O=v<=r+1
f € L]0, 1 +(r+1)t] and let P be a polynomial of order r. Then
| f)— P ’;,_’_ll,_ 1 =0 (0 t“—,,lo»l iy +C(v, Y| f—P) L0, 1+£(r+ D).

Lemma 6’ [4, Lemma 3'). Let O—v—r+1, fYeL,[—(r+ 1)t 1] and let
P be a polynomial of order r. Then

!f“"—P“”H.pp»_ =0, ()Ln| ity FCv, Y f-P le[—(nH)l, 1 -



46 P. G. BINEV

Let u,<a,<<...<<u, and a - min{a, —«a, ,;i-1,2..., n} The following as-
sertion is proved analogously to [.emma 4 in [4].
Lemma 7. If feL,uy u,| and O<t=a/(2r+2), then

rl ’lu’r+l(f; t)Lpl“‘ B u”}p \f\f{c(r}(')rf-l(f; t)Lp lag, a ,,]} P'

1=

Lemma 8. Let 0 -v —r+ 1, f€ Wila, a,], 0=t=a/(2r+2) and s be a
spline of order r with nodes u,, u,,..., a, Then

fO =8 Lt a1~ Cre V{0, (fY5 O 1oy a) +E 1 f=S 1w a1 -

Proof. We apply Lemma 6 and [Lemma 6, respectively, in the intervals
[a; \, (@, +0a,)2] and [(a, +a;)/2, o] for £=a/(2r+2) and obtain

O =t = =8 e a2 Y =SV (@ a2 ey
=200 (S5 Oy yoay HCV DE I f =Sl a).

This inequality gives the proposition of the lemma in the case p= . For
l=p< -~ we have

fr s 17p|u. ol =20.207 @, (S5 t)Lpl“i-—n' a, )y
i ‘

FC P sl b

Adding the above inequalities for /=1, 2, ..., n and applying Lemma 7 we
obtain

(V) g(v) ;P = £ | ftv) g | »p

y S HLplao, ap) i—1 s S [Lpl"‘—-l' @l

=47 ‘E‘l (@, 4,5 t)Lplu‘._l. ..‘I)"-+—C(v. r)t"")’ifl | f—s fn[u u,]}

=P{C(r)w, ([ t)Lp lag, @] Y+ (C(v, =) | f—s “‘fpluh. u”)}

and therefore

f“"—s‘”il.,,lu..- ..,,,‘$4{C(’)w,,,(f“’; t)l-,,luu- al +C(v, nt~ f-s £ plac ) )
The lemma is proved.

From the properties of the moduli see [2]): t,(f; )z, C(k)ow, (f"; S)Lp‘
Wy f; d)l‘pxdm,, W(f: 8), and after applying Theorem 1 and Lemma 8 we
obtain the proposition of Theorem 2.
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