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SOLUBILITY OF FINITE GROUPS WITH A TWO-VARIABLE
COMMUTATOR IDENTITY

DANIELA B. NIKOLOVA

The subject of our recent research has been groups which satisfy a commutator iden-
tity of the type: [x,, v]=[x.,v], m, n¢N, m<n. If G issuchagroup, then there exists a minimal
law [x,, v]=|x,, y]. me<n, for it. The invariants my, n, depend essentially on the struc-
ture of the group. On the other hand, the structure of the group can be deduced in terms
of my, n, With the purpose of obtaining a characterization in terms of the first invariant m,
for small values of m_, in this paper we are interested in the class of finite groups with a
minimal law [x.y]=[x,, v]. 2<n. Such groups turn out to be soluble.

1. An Engel word in variables x, y is a left-normed commutator
en(x, y)=[x, ¥, ¥...., ¥]. We are interested in the laws of the type
—_—

m entries

(N eq(x, V) —e(x,y), m<n

which hold in a group G. Such a law is said to be minimal, if and only if G
has no similar law with a lexicographically smaller pair (m, n).

Every finite group has such a law for some m, n. We want to deduce
the structure of finite groups in terms of the first invariant m. In this paper
we are interested in finite groups with a minimal law

(‘3) "2("" V)= e,(x, y)’ 2<n,

because, on one hand, finite groups with a minimal law e (x, y)=e,(x, ¥), 1<n,
are abelian [3] and, on the other hand, there exist finite simple groups with
a minimal law eyx, V)=e,(x, ¥), 3<n, as PSL (24) =PSL(2,5)=A; and
PSL (2,8) for which we obtain es(x, y) eg(x, v) [4] and es(x, v)=e5(x, V)
respectively. The main result here is the following
Theorem. Every finite group in which the minimal law ot type (1)
is e)(x,y) e, x,y), 2<n, is soluble.
1.1. Notations and definitions. We write x”=yxy~ ', [x, ¥]
xyx ly | I,\‘,,] Xoy ooy Xol =[[X0 Xar. ooy Xaa] X, We set e,(x, v)=[x,,¥]
[x, vi v,... V]

n entries

let 1 Z,~Zy Zy ... and G T, -T, -y - ... be, respectively, the
upper and the lower central series of a group G.

We denote by Syl,(G) the family of Sylov p-subgroups of G.

Following Gruenberg, we say that a group G is an Engel group, if for
every pair of elements x, y€G there is an integer k—A(x, y) such that
efx, v) 1. 1f e (x, v)is a law in G, then G satisfies the n-th Engel condi-
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tion. [f G is an Engel group which satisfies the z-th but not the (n—1)-st
Engel condition, then (G has Engel class n.

A minimal simple group is a finite simple group of a composite order
all of whose proper subgroups are soluble. Those groups have been described
by Thompson [7]

Consider the matrices £,;¢ GL(n, K), where K is a field, which contain on
the (4, j)-th position 1 and O clsewhere. We remind that the matrix £, (a) - £
+0ol,, ueK, a0, is called a transvection.

All unexplained notations are standard and can be found in [1] or [2].

1.2. Some preliminary results. Lemma 1. /f G is a nilpotent
group whose minimal law of type (1) is (2), then

(1) G is an Engel group of class 2,

(ii) G is nilpotent of class --3,

(iii) G is metabelian,

(iv) the centralizer of each element x¢G comprises the contjugacy class
generated by x.

Proof. (i) G is an Engel group of class 2 by Lemma 3 of [3].

(ii) Then we use a well-known result of Levi [5], that is: each group
all of whose 2-generated subgroups are nilpotent of class 2, is nilpotent of
class 3 (and the exponent of the third term of its lower central series is a
divisor of 3).

(iii) Since each commutator of weight n is a product of left-normed
commutators and their inverses of weight n (i.e. is their consequence [2,
33.35]), the group G is metabelian. This fact follows as well by the well-known
group-theoretical inclusion: G®- T .

(iv) wx€G, wveaq, [v x, x]—1, which give [y x]x x|y, x], yvxy!

xyxy e Lo (yxy Hx o x(Cyxy ).
Thus we have [x”, x| -1, yx€U, yveG.

LLemma 2. Every finite nilpotent group G, such that 3 does not divide
its order |G, and he minimal law of type (1) in G is (2), has nilpotency
class 2.

Proof. Consider the lower central series. By Lemma | we get G--T,
>, >y, I'i=1and G I +T=G Ty -1

The same result of Levi [5] gives exp(I’y)|3. Since there exist no ele-
ments of order 3 in (G, we have I'; 1 and hence [x,, x,, x| -1 is a law in
G. In particular, if Gis a finite group with a law of type (2), every sub-
group of Syl (G), p =3, is cither abelian, or nilpotent of class 2.

2. Proof of the Theorem. The theorem is proved by examining a
counter-example G, of least possible order. So, every proper subgroup of G,
is soluble. Assume that G, is not simple, i.e. there exist H,<U, 1+ H,+G,.
Both groups H, and G, H, are soluble, as they satisfy laws of type (2) (be-
cause (G, does), and have orders smaller than @,. Then G, is soluble too,
contrary to our assumption. Hence, G, is a minimal simple group, belonging
to the list given by Thompson [7]:

(i) PSL(2,27), for any prime p;

(i) PSL(2, 37), where p is an odd prime;

(iii) PSL(2, p), where p is a prime, p 3, p?+1 -0 (mod 5);

(iv) PSL(3,3);

(v) Sz(27), where p is an odd prime number.
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2.1. G,+PSL(3,3). Assume that in G,—PSL(3,3)=SL(3,3) the minimal
law is (2). Then, the minimal identity in H,=8L(2.3)<q, is either of type
ex,y) e,x,v), 1<n, or of type (2). Since the former case is not possible,
because H, is not abelian (see [3]), the minimal law in /, is of type (2) as
well. The only normal subgroups in K, are S=Syly(f1,) and Z(H,)= gp(z) of
order 2. Consider an element s¢S8, s#+1, z. Since [k, s|€S, ya€H, we have
[A,38] = 1. But then ek, s)=1=eyk,s) and [hys]=1 yiclds [s* s]=1 as in
Lemma 1 (iv). Hence, the normal closure of s in FH,: (s") is abelian, which
is impossible since S-(s/%).

22. G, is not a Suzuki group. Assume G,—Sz(g), where ¢ =27 and
p is an odd prime number. Then [6] the (ZT)-group G, is of order
g%(q— 1)g*>+1). Let a, b be two of the symbols on which G, acts. Consider
the following three subgroups:

H:censisting of all elements in G, leaving a invariant,

Q:consisting of all elements in £\ {1}, leaving only a invariant,

K :consisting of all elements in /H, leaving & invariant.

Then H is the split extention of Q by K:H=QK. We know further that:

(@) Q€Syly(Go), QI F, | Q=g exp(Q)=4;

(b) | Z(Q) ~~¢ and Z(Q) consists of all involutions in Q together with
the unit;

(c) yo€Q, o+ 1=Cg(0)=Q;

(d) K is a cyclic group of automorphisms; its order coincides with the
number of the involutions of Q:¢~'; an element =1 of K leaves only the
identity invariant; K permutes the set of involutions transitively and cycli-
cally.

Consider an element s=-1 of @ which is not an involution, i.e. |s|=4.
The number of those elements is ¢2—¢ and they are divided into two con-
jugacy classes in @, (since the number of irreducible characters of G, is equal
to the number of classes of conjugate elements (see [6, Proposition 18]). More-
over, two elements of the group Q are conjugate in G, if and only if they are
conjugate in /. Find the order of Cy(s). The centralizer Cy(s) contains
gp(s, Z) of order 2¢, where Z= Z(Q). Thus,

|S" . | H | | H | — q’g—1) - q(g—1)

CS | o 1€ T 2 2

i. e. the two classes together contain at most 2¢(g—1)/2=¢%>—g elements.
This means that cach class of elements of order 4 contains exactly g(g—1)/2
clements. Hence, | Cy(s)|=2¢%(g—1)/qg(g—1)=2q.

On the order hand, ywk €/, [k, s]€ Q. As by our assumption the minimal
law in G, and so in / is of type (2), then we have [Ah,;3s]=1. Hence,
|#,08] =1 and [s, s®]==1. But then s¥<C,(s), which is impossible since in
C,/s) there exist only ¢ elements of order 4, while |s?|=¢g(g—1)/2. Thus G,
could not be a Suzuki group.

23. G, doesn't belong to the series (i) and (ii). It remains to
consider the groups of the type PSL(2,g). The idea here consists in the fol-
lowing: find two matrices A, B¢ PSL(2, ¢), such that [A,,B] are all transvec-
tions, y&>2, while [A, B] and [A,B] are not. Then the minimal equality for
the elements A and B would be of the type e,(A, B)=e¢,(A B), 3—m<n,
and PSL(2, ¢) could not have a minimal law of type (2). Hence, G,+PSL(2,q).
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Since in the cases of consideration ¢ -4, q'#.“). there exists an element
&€ GF(g), such that €2+ + 1. Consider the matrix

B- ( :) x;(')"‘)'

It has the following interesting property: i€ GF(q), [£5(2)..B]—£,2((1
—g2)%), i. e. if p—=char GF(g)+ we obtain nontrivial transvections for any k.
If we find a matrix A, such that C=[A,B| is not a transvection, while [C, B

“t15(2), this would complete the proof of the theorem.

Let

b

A=(F V) xt—yz=1. C[ABI=({ 4) ad—bc -1

By the straightforward computation we look for a C of the form

C::( a ) where o 1,

0 a!

since we don’t want C to be a transvection. Thus we get

C1AB (5 1)

Now, we impose on C the condition [C, B| -£,(1) which gives

. e2 g1 —g2) !
¢ ( 0 €2 )

The variables x, y, 2, £ we determine by the following system of equa-
tions det A -1, ¢-0, b &*(1—e2) L.
Fory 1 we get

—eMe+1) Yez—1)"3 1
& ((*L'-'-— ! —e et (e )2 )

Thus [ALB|+[A,B|, wk>2 and [A, B] i [A,B]. w/>1, since [A, B] and
[A,,B] are ncither transvections, nor can coincide with the unit matrix. This
completes the proof of the theorem.

3. Further on, it seems interesting to characterize the class of soluble
groups with a minimal law (2). Some examples explored by the author as the
symmetric group Sy, the two nonabelian groups of order 8: Dy, Q. the
groups Dy, A,, the varieties 9, for (& 1) 1, yielded the assumption that
the solubility length of such groups is 2. However, this is not true as there
exist groups in the class which are not metabelian.

Proposition. There exist soluble groups with a law (2), which are
not metabelian.

Proof. Consider the nonabelian group NV of order p* and exponent p,
where p is an odd prime number N (a, b|a” -b” <[a, b]” 1). If we denote
by ¢ the commutator [a, b], cach element x of the subgroup N has the form
xXoakb'et, 0k Lt po 1. Two elements of N are multiplied in the follow-
ing way: (a*blc ) akbletr)y —aktrptthet vhe kil
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Since | N/Z(N) =p?, NN=Z(N) then [x, vy, z]=1 is a law in N. We get
N =Z(N)—=(C).

Consider the mapping a: x —a*b'c’ — a*b—'c’. 1t is easy to see that a is
an automorphism (of order 2) of the group N

Consider the split extension G of N by the cyclic group H—=(a), i.e.:
G -NMH, NQG, NI1H=1, G=NH.

Since G’ N, we get G'’+1 and G is not metabelian. Actually, G is so-
luble of class 3: GDNTZ(N)=N" 1.

Let us find the law in G

(a) YEN, i.e. y=akb'c!, 0—k, |, t~p—1.

An element z-—a*b*c® belongs to the centralizer C,(v) if and only if
#l ik (mod p). Thus y*¢€ C (v). Consider x¢G, i.e.x=a*n,e=0,1,n¢N:

[x. y]=[a*n, y]=[n, y]°[ac, y]=n'y*" y= € CA(Y).

So that [x,V]=1 and the minimal equality for those two elements is
[xav]=[xaV]

(b) Y¢N, i.e. vy —aa*blct 0--ky, Ly to—p—1.

Let x€U, x=a“a*blc, where 0=k, [, t,=p—1, =0, 1. Consider two
cases

b.l. & 0. We can prove by induction on m that [x,, V]
L @2 R 2L 2M T a2 ) — ki) |

If m is the smallest positive integer with the property p|[(2m—!'—1), then
the minimal equality for this pair of elements is [x, v]=[x,,V].

b.2. g =1. Here again by induction on m we get

[Xope V] = @27 ha k) P2 (1l 2™ AT — D120+ R M+ 1L =27 ])

If m is the same as in b.1., we obtain [x, y]=[x,, v].

Hence the minimal law in the group G is ey(x, V)=emi(x, ¥), where m is
the smallest positive integer with the property p|(2m—'—1) (m--p by the
theorem of Ferma-Oiler).

By an exhaustive search computer program we have shown as well that
the minimal identity in the symmetric group S, is ey(x, y)=e(x, ¥).

A characterization of soluble groups with a minimal law (2) is still not
known to the author. .
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