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STRICTLY G-VALUATED FIELDS

A. KONTOLATOU, J. STABAKIS

The archimedian and non-archimedian valuations of the set Q of rational numbers lead
us directly to get the fields R of real numbers and Q, of p-adic numbers, respectively. It’s
cnough to complete Q by these valuations. Next, the well known extensions of the notion
of valuation referred to the substitution either of Q by an arbitrary commutative or non-
commutative field or of R+ by a totally ordered abelian group. The present paper is devot-
ed to define a valuation (called valualive order), ranging over a partially ordered abelian
group. The main result is: Given a commutative field (K. +,.) and a partially ordered abe-
lian group (G, +, ) there exist an extension K; of K and a valuative order v of Ky rang-

ing onto G J{ -}.

1. Preliminaries. The generalization of the notion “valuated fields™ had
been obtained in several ways. The non-commutative valuated fields were
considered firstly by O. F. G. Schilling and independently by M. Krasner. Va-
luations ranging over partially ordered abelian groups have been firstly stud-
ied by L. Fuchs and a little before Zielinski had considered the particular
case, where the value group was a lattice. The present paper is concerned
just with the case where the value group is a partially ordered abelian group
and especially in solving the following problem: Given a field K and a par-
tially ordered abelian group G, is it possible to extend K to a field walu-
ated on G?

The problem has been solved in the case of totally ordered abelian group
(see [7], p- 31). Besides, when the ordered abelian group (G, +, ) is torsion
free, it is obvious that, extending the partial order to a total one, we come
to the above known casc. The answer is positive too, in the case where
(G, +, - ) is mixed. Here it will be needed to evaluate the field K on the
torsion subgroup G* of G and extend the group (G'G* +) to a totally order-
ed abelian group. So, in any case, an analogy of proofs is obtained. Through
the whole work it seemed useful to give a new definition of a “valuative or-
der” preserving the hypermetric  property which, the “valuative order” rang-
ing over a totally ordered group, had. The use of Kurepa's completion allow-
ed us to realize it.

let (G, +, =) be a partially ordered abelian group, < the strict order
and by x//y we mean that neither x-—y nor y-x. Il AcG and x¢G, write
A< x (resp. x<A), iff for every yeA we get y<x (resp. x<y). Finally de-
note by A~ B the complementary of B in A. Next we remind the following,
referring to an order structure (G, ). A couple (A, B), with A, B nonvoid
subscts of G is said to be a cut iff it fulfils the statements:

I. (ya€A)(ypeB) [a<B];

2. If A< P, then BeB;

3. If a<B, then a¢A.

A (resp. B) is called lower (resp. upper) class of the cut. It A, B have no
ends, the cut is a gap. On the set G,=G!/[L(G), where L(G) is the set of
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STRICTLY G-VALUED FIELDS 65

gaps, is defined an order structure, extension of the initial one (we also denote
it by =), which is a lattice. The structure (G, =) is the Mac Neille com-
letion.

P Now, let L; (resp. L;) be the set of lower (resp. upper) classes of cuts
with no ends. The Kurepa’s completion (see [1]) is the order structure
((7, =), where G- GUL; UL ordered by =, extension of the initial one in
the following way: Symbolize by [~ or @ a class A¢ L, depending on whe-
ther the cut (A, B), defined by A, is a gap /, or the upper class B has a mi-
nimum element a. Similarly every B¢Lj is denoted by (* or a*. Moreover

note a=a" for any a¢(. Then every element 5'6(7 is of the form e% where
e¢Gp and 3 is one of the signs —, 0, +, called Kind of e. Putting —<O0

”

< 1,3, define an order on @, such that:

er<eyr<>e,<e, or (e,—e, and &, <&y).

The following is known :

(1) The completions (Gp'<) and (G, <) of (G, <) are complete lattices.

(2) If x, y are elements of G, and x//y, then
inf5{x, y}¢C (resp. supz{x, y}¢G), where inf; A, A—E (resp. supzA, A < E)
denotes the inf A(resp. sup A) into G.

Finally we recall the notion of valuative order. This is a function v with do-
main a field (K, +,.), ranging over a set G=G | {=<}, where (G, +, <) is a
totally ordered abelian group and <o is the last element of G, such that for
each v¢G, vY+o=co4+y= >=20. The function v fulfils the next
conditions :

(i) V(x)= o=x 0,

(ii) v(xy)=v(x)+v(y), for every x, y elements of K,

(iii) v(x)=Vv(—x), for each element x of K,

(iv) vix+y)=min{v(x), v(y)}. for every x, v elements of K.

2. Strictly G-valuated fields. We begin defining the “valuative order” in
the case where its range is a given partially ordered group.

Let (K, +,.) be a given commutative field and (G, +) an abelian group,
ordered by — (dfnote (G, +, =). Wealso put G=G{<=}, where -5 is the
last element of G and for each Y€G, v+ o0 =0 +vy= 0+ co=co.

Definition 1. A function v:K—G is called G-valuative order on K,
if the following conditions are satisfied:

(i) v(x)= o<>x =0,

(1) V(x.y)=Vv(x)+Vv(y), for every x, y elements of K,

(iii) v(x)=v(—x), for every element x of K,

(iv) vx+y)=—infz{v(x), W(v)}, for every x, y elements of K, where G is
the Kurepa's completion.

Remark 1. By (iv) the v(x+y) belongs to the upper class B, of the
cut (A, B) of G, where A is the set of elements of G, which are smaller than
v(x) and v(y). This last statement implies that if v(x) and W y) are different
and comparable, then v(x+y)-—min {V(x), v( y)}.

Indeed. if V(x)>v(y) (1), then v(x+y)=infz{v(x), W ¥)}=vy) (2).

5 Cn. Cepanka, wu. |
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Next v(y)=—infz{v(x+y), v(x)}, that is to say, v(y) belongs to the upper
class B’ of the cut (A’, B’), where A’ is the set of the elements which are
smaller than v(x+y) and v(x) and because of (1) and (2), it derives that
v(y)=v(x+y) Besides, if v(x) v(y) the infz{v(x), v(v)}, belongs to
GG (c. I Section 1(2)) and this means that v(x + y)>infzv(x), v( y)}.

According to the properties of a valuaiive order, the n:xt propositions
are valid:

Proposition 1. (1) /f 1 is the unit of the field K, then v(1) 0.
Therefore, for x+0, v(x) -v(l/x);

(2) V(x—y)—infz{v(x), M(v)};
(3) If the field K is finite and the group (G, +, =) is torsion free, then
the only G-valuative order v:K—G which would be defin>d, is the trivial one.

The proof is obvious.

Proposition 2. The function v:K -G is G-valuative order iff it sa-
tisfies the (i), (ii), (iii) of definition 1 and the following condition:

(iv)" If v(x)>y and v(y)>vy, then v(x+y)>v, for each v¢ G and x, y arbi-
trary elements of K.

Proof. Let v be a function of K into G satisfying the above (i), (ii),
(iii) statements. We denote by (A4, B) the cut in G, where A is the set of
elements which are strictly smaller than beth v(x) and v( y).

Now, suppose that v satisfies (iv)’. I[f for an element y of G, v(x)>y and
v(y)>v, then y¢A. But in this case, because of (iv), v(x+y)>v. It means
that, for each v¢ A, v(x+y)>y and consequently v(x+ y)—iniz{v(x), v(v)}.

Inversely if for a y€G, v(x)>y and v(y)>vy, then, by (iv), v(x+y)
—-infz{v(x), v(y)}. It remains to prove that v(x+ y)>y. But if v(x) v(y) then
infz{v(x), v(¥)}¢0, so infz{v(x), v(y)}>7.

Besides, if they are comparable, infz{v(x), v( ¥)} =min {v(x), v(y)} and v(x+y)>7y.

Remark 2. Analogously to proposition 2, one can prove that for a
function v satisfying the (i), (ii), (iii) of definition 1, the following conditions
are equivalent (suppose that x, y are arbitrary elements of K and y¢G):

(i) The relations v(x) -y and v(y) -y imply the relation v(x-+y) -y.

(i) If inf(,-D{v(x). v(y)} is the inf{v(x), v(y)} in Mac Neille's completion,
then v(x+y) ‘inf(,u{v(x). v(y)}.

Proposition 3, referring to G-valuative orders is similar to this one, refer-
ring to valuative orders.

Proposition 3. For any G-valuative order v:K ~G there holds :

(1) The set v(K {0}) is a subgroup of (G, +. =) (value group of v).

y (2) The set A,={xe¢K|v(x)--0} is a ring with identity (valuation ring
of v).

(3) The set M, —~{x¢K|v(x)>0} is a maximal ideal of A, while A, M,
is a field (residual field).

Theorem 1. If (G, +, =) is an ordered abelian torsion free group
and (K, +,.) a commutative field, then there is an extension K, of K and
a G-valuative order v of K,, with value group G and residual field K.

Proof. It is well known by Lorenzen-Simbireva-Everett’s theorem (see [2],
p. 39): Every ordered abelian group can be extended to a totally ordered one
iff it is torsion free.



STRICTLY G-VALUED FIELDS 67

So, in the present case, we consider the extension of <= to a total order
= according to the above theorem. We can continue as in the known theorem
(see [7]). We describe the basic steps of the proof.

Let K[x]¢" be the set of all the “generalized” polynomials with coeffici-
ents from K and exponents from GT={yeG:0=y}. Defining as usual the
addition and the multiplication of the polynomials, we get the ring of polyno-
mials (K[x]°", +, .). In the process we define a function v:K[x]G+—G as fol-
lowing :

V(@)= o, V(S)=v, where S=a,x"+a, X"+ .. +ay xm

(@y,+=0, 0=v,<v< ...V v, €6GT, i€{l, 2,..., m}).

It is not difficult to verify that v satisfies the properties of a G-valua-
tive order. Besides, the ring K[x]9" is an integral domain. Hence we can con-
struct the field of fractions by elements of this integral domain (considering
in the known way the reduced fractions).

So, K,={s.t'|s¢ K[x]9", teK[x]"{0}}. R

Finally we extend the valuation v, to a function v, of K, onto G, as
following :

vi(S/t)=v(S)—v(£), where S/teK,.

Now, it is easy to verify that v,:K,—G is a G(-valuative order with va-
lue group G and residual field A, /M, =K.

3. The factor group G/G* as a totally ordered group. Let (G, +, <)
be a partially ordered abelian group. We will construct a factor group of G
and we’ll order it by an order, induced in a natural way by <. Denote by G*

the (maximal) torsion subgroup of G and symbolize by a the class (mod G¥)
of any a€G.

Proposition 4. All the elements of G* are parallel to the neutral
element of Q.

Proof. Indeed; let a¢G*—{0}, O the neutral element of G. Then [3n¢N)
[na -0). If a>0 (resp. a<<0) then na>0 (resp. na<0), which is absurd. The-
refore a//0. ‘

Proposition 5. Every class of G/G* contains parallel elements.

Proof. Suppose that B is an element of a given a. Then B—a+u, u¢G*,
Ba-—u and u/'0. Thus B—a//0, hence B//a.

’

Proposition 6.1f a, a' are elenents of two different classes with
o' <a, then for each Bea and P’ ¢ o', we have B' <P or P’//P.

Proof. Suppose that a+u-p, where nu=0 and o' +u’—f’, where
mu-—0. 1f o is the (L.C. M) of m, n we have off—op =oca+o(u—u")—oca,
thus o(f—p’) -o(a - a’)>90, cB>cP’. Hence B>p’ or B//p".

Proposition 7. If u¢G* and a¢ G~ G* then a+u¢o.

Proof. Let n be the order of w(ordu—=n) and a+u=pB. If ord (a+u)

m¢N and p is the L. C. M. of m, n then p—a=u and p(B—u)=pa. Thus
pB—pu-—0 - pa and a€G* is false. Therefore ord (a+u)= ~.

Definition 2. Define on the factor group G/G* a relation R as fol-
lowing: aRP<>*a B or “there exist a,¢a and B,€P such that a,<B,”. If
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‘the classes are noncomparable according to R, then we cull them parallel
(symp. @a//B).

Proposition 8. The R of definition 2 is an order-relation, compa-
tible with the structure of the group (G G*, +).

Proof. (i) (ya)[aRal, obviously. (ii) If aRB and BRa, we distinguish two
cases. The first, if a =P, the second if therc exist a,€a, B, € B, a,€a and B, €B,
such that o,<B, and at the same time PB,<a,. The last case is false, for it
contradicts Prop. 6. Thus a=f. (iii) We prove the transitive postulate. Sup-
pose that aRP, aRy, where o, B, y are different classes one to another. (If two
or three of a, B, v, coincide, proof is evident).

Then there exist a,¢a, B, and B, elements of B and vy, ¢v such thata,<B,
and B, <y, If B,=B,+u, where wu¢G* then the element a,+u belongs to
a. Thus a,+u<Py+u (prop. 6), u,+u<p,<y,- Hence aRy.

(iv) R is compatible with (G G*, +). Suppose that aRpand y are an arbitrary
class. There are a,€a, B,¢p, where a,<B,, We have a,+ y<PB,+v, thus
a,+YRPB,+v. Hence a+vyRB+7v.

From Proposition 8 and [Lorenzen-Simbirena-Everett’s theorem (G/G* is
torsion free) we conclude that

Proposition 9. The structure (G/G* +, R) extends to the structure
of total order (G/G*, +, =) (where R is the relation of def. 2).

The main result of this paragraph is the next theorem:

Theorem 2. Ewvery partially ordered group is decompoused into a fa-
mily of classes, such that, if S, and S, ure two classes of the decomposi-
tion either there is no element of S| larger than any element of S, or there
is no element of S, smaller than any element of S,.

Proof. We consider the totally ordered group (G G* +, =) of Propo-
sition Y and define on G relation =, as following:

a= P<sa B,

where o, B belong to G/G*. It is easy to prove that -, is an order, exten-
sion of the initial <=~ and compatible with the operation of the group. Obvi-
ously the construction or the relation R of definition 2 for the structure
(G, +, =,) gives us the s structure / (G/G*, +, 7).

The required family of subsets is the set /. Indeed if «, B are two diffe-
rent classes, such that a =~ B, the aRp or «//B (R is the relation of def. 2).
Thus (yx€a)(yyeP) [x=y or x/ y| and the proof is over.

Remark 3. Evidently, if we consider the structure (G, +, --,) and §,,
S, two different classes of the above decomposition with S, =S, then x, - x,
for each element x, €S, and x,¢ S,.

Remark 4. If x,y are elements of C (modG*) and x’, y’ element of
C’ (mod G*) then the classes of the elements x+x’ and y-+ v’ coincide.

4. Extension of a field to a strictly G-valuated field. We finish giving
what we can characterize as the main result of this paper.

Theorem 3. For every commutative field (K, +..) and for every
partially ordered abelian group (G, +, <), there exists an extension
K of K and a G-valuative order v of K onto (G, +, - ).
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Proof. The construction of K and the definition of v will be established
to two stages. The first (the torsion step of the demonstration) is comprized
of the construction of a field K, which is an extension of K and the defini-
tion of a G-valuative order v, with domain the K,, and value group the tor-
sion group G*. In the second part of the proof (the torsion free step of de-
monstration) we extend the field K, to the field K and we extend the v, to
the (-valuative order v, which has as a domain the K and as a value group,
the group G.

I. The torsion step of the proof. Let (G* +, <) be the torsion
subgroup of (G, +, =). First of all we consider G* as an homomorphic image
of a free abelian group (F,.) by a function

(1) g:F—G*.

(It is well-known that every group is an homomorphic image of a free group
(see [8], p. 10). Let X" be a free system of generators of the free group F
(that is we consider the set X as the alphabet of the free group F). We or-
der the set .X" by a total order < (independently if X is of finite or transfi-
nite cardinality). Suppose that x, i€/, where / is an arbitrary index set, are
the elements of X" and consider the set .#, of all monomials of the tvpe

(2) M=xu.xd. .. xn,
where the number of x, is finite, a, are integers, x¢{l, 2,..., n} and
XI|< xi,< LR <x:n'

We consider these monomials in a “reduced form”, that is, if an expo-
nent a, is zero, the factor x:‘x is missed, except in the case where all the ex-

£
ponents a, are zero, in which case we write 1 in the place of the monomial.

By the known way we define the multiplication of two monomials and
also the inverse of a given monomial, where, as the reduced type of a pro-
duct M;M, we mean the form, which is produced when one does all the com-
mutations and the monomial gets the form (2). (By this way we have written
all the elements of .#, in a fixed form and so the structures (.#,, .) and
(F, .) coincide.)

Next, we introduce in the set .#, an order <, extension of the already
defined order < (that’s the reason of the same notation) in the following
manner :

put M=xtx ... x;n>1,if ;>0 and M=x... xin<1, if a,<0. We

A n

also define that if M,, M"l belong to .#, then
(3) My<M,, iff M, . M;'>1.

It is evident that the relation < is compatible with the structure (F, .).
So we can consider F as a totally ordered free group (F, ., <).

Now, we construct the ring o/ of the generalized polynomials of the form
(4) A =uM; +u.Mi+ . .. +uM;

where «, ¢ K and the monomials M;, je{l,..., n} have been put according
to increasing order, that is M, <M, < ... <M,. On the set &/ xXo* where
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/% =/ —{0} and O the neutral element of addition, we define the known
equivalence (A, B)~(A’, B')<= AB" A’B, that gives us the field of fractions
K=o <X ~.

Next, describe the definition of the above mentioned G-valuative order v,
onto G*/{ } (the symbol —~ has the well-known properties).
mM; + ...+ “m”,” SiMp + S My
UM, + ... +U,M, B oM, o+ +tpMAp

m

and A~B, then M, .M '~ Mg .M, ' So, if Fis the above mentioned free

group and A the image of the canonical projection of the above A into
of <.of/* ~ K|, then the map B

J:K| ~F with value d(A) M,,Mj.‘l is well defined.

We begin regarding that if 4 —

Consequently, if g is the homomorphism (1) we define the function
v i K|~ G* with vi(A) -goh(A). The construction of v, finishes putting
v,i(0)= . To simplify we’ll use the symbolism v,(4) for A¢K, instead of the
right v,(A).

It is a simple consequence that v, is an epimorphism of K, onto G*.
Besides, we have that v (0)= o, vi(A.B) = v{(A)+V,(B) v,(A) v (- A).

Finally we'll prove the hypermetric property, at first for polvnomials and
next for fractions of polynomials. Let S uM; ~ ... +u Mt UM, + L

T (,’m/W,-m.
We have the cases:
(i) M, =M, and v(S) ~v,(¢). Then v(S-+¢) glmin{M;,, M,}| = v(S)= v, ().
(i) M, =M, and V(S) v (¢), hence v(S) v(f), v(S+£{)eG* and there-
fore is larger than inf; {G*} that is the minimum element of the complement.
(iity M,,- M, and v(S) = v,(f). Then S+¢ ~(u,+U )M, + ..., hence
Vi(S+8) - M, -inf; {vi(S), vi()} = vi(S).

Let now S, ¢ be as above and S'=uM + ... +u M t'~-UM, + ...
. & . )
*—(/)\M“‘.

St + 87t

We'll prove that v ( : + : ) infg{v( ; ), V! ;S, )i " ) V(S + S

vi(tt'y —infz (v (St), v (S} vi(tt) -inf,;{vl(u,M,‘Ul'M/'_ Ll v,(ll;M,"U,M,,
oo UM UM, L) =infp{g(MiM;), (MU M)} - g(M M)
infr{gMi)+gM) ). @M )+ gM,)}+ e(M;,— gM).
But inf; {a, B} —vy inf;{a v, B -y} Indeed. if inf; {a, B} 0 then 6 a, 6 .
Therefore 6~y infz{a—y, By} IF 6, inf;{a—y, B -y}, then &, a—vy,
o, B v, hence 6, ~y- a, 6,—y P, so &,y infz{u, B} o.
Thus
infy (g(M.) + (M) gM;)+gM,)}—gM,) gM,)

infa (@M. )+ gM))—g(M,)—gM, ). gM)+gM,) gM,)—gM,)}
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. . . S S’
—inf{g MM, (M, M)} =infzfvi(55). Vi)

II. The torsion free step of the proof. We consider again the maximal
torsion subgroup G* of G, the extension K, of the field K as well as the va-
luative order v,, of K, of the previous step. We also consider the structure
(G G*, +, <1) of Proposition 8, where the factor group G/G* is totally order-
ed by 1, induced by < and being an extension of this <.

Finally, let ' =(y,)«s be a system of representatives of (G/G* +, <),
where the representative of G* is always 0 and I't ={y,¢I:0<,y;}. As we
have described in Theorem 3, if vy, <y, then v ,<,y,, too. Construct now the
ring K,[x]" of the reduced polynomials a, x"+a, x*+ ... +uy"x7n,wherethe
indexes (and exponents) have been given in increasing order 0<,y,<,7v,<; ...

<,v,) and the components ay, are elements of K,. To each element » of I'
we correspond the class C.(mod G*).

On the ring K,|x]"  we define the multiplication of monomials: x.x/:
x*, where ¢ and x“ 7/ ¢C,. Analogously, the multiplication of polyno-
mials is defined in the known way. Likewise x% . x/i—!=x* where x¢I and
Xt C.
Remark that in the multiplication

(U, X7 X7+ u.,.nx"f') ap P+ ag X + L ag xTm),
4 - m

" 4 3 : -
putting x7x" - x*1 and x ix"i=x, #/ will be #}=w»/.

Next we construct the field of fractions L of the polymomials K,[x]" " and

put G -G {>}. We can suppose that this -~ and that one, we had put in
the torsionn step of the proof, coincide.
Just as in the first part of the proof we consider the known equivalence

~ and after that, putting K — [/~ define the function v of K as following:
v(0) CV(E ey x iy - vy(a, )+ v,, where v, is the valuative order of K, onto
G*11{ -} (as exposed in the previous part; hence v,(a,,)€G*).
;_‘, a, x ! .
= )V S ax :)—\'( S ag x™).
p ag X! ! ’-l '
i=1 !
n r 8
Yoa, x’ Y oagx !
Firstly we remark that if A= "% —, B-‘ ' are equivalent (mod ~)
Y oagxt Ya x'

then a, .a, «ap .oz and v, +& B, +5,: then vi(a,,) + \'1(‘1:.)+ Y+ € =Vvy(ag,)
b v (a,,)+ B, + 0, whence vi(a,)+y, —v(ag)—PB v,(aﬁ‘)+b,—vl(at|)—cl. There-
fore v (A) v(B), hence if A is the canonical projection of A onto K, we can put

v(A)  v(A).
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v is a valuative order of K.
(We use the above symbolisms of 4 and B and by A, B we mean the cor-
responding classes (mod ~) of A and B.) Indeed

(i) v(0)= <o by delinition,

(i1) V(A.B)=Vv(A)+ v(B) because

V(A . B)=v(a,)+vy(as)+ v, + 8 —vi(ap)—v,(ac)—B, —&,

and  v(A) V(B) = [v(a,) + v, -v,(dp) — Bi]+[v(@s)+ 8, vi(as)—¢].  Finally,
we'll prove that if A and B belong to L, thenthe relation v(A+ B) ~infz{v(A),

v(B)} holds.
We'll proceed as in the previous step, working firstlv with polynomials
and next with fra:tions.

Let S, te K [x]"
S=ay,x"+ ... ta, xn, t=KpxP+ ... +Kpmxﬁ'".

Distinguish the cases:
(£) v(S)=v(¢f) or equivalently y,=p, and v,(a,)=v,(K}s,) because

vi(ay,) + v, = Vvi(Ks,) +B;,
S+t=(a,x"+ ... +a’(ﬁxY")+(KB.xB‘+ . K’Bmxﬁ’"):(u‘r.‘fKB|)-’C."+ cee
V(S+8) =vi(a, +Kp)+7v, zinfzivi(a,), vi(Ks)}+y,=infz {V(S), v(£)} -v(S).

(i) v(S)+v(f) and y,+pB,: thus they belong to different classes, whence
they are comparable by <1, let be v(S)<,v(¢). So

V(S+E)=v[a, x4 ... +KgxPi+ L) =v(ay,)+y, =min {W(S), v(2)}.
(iii) v(S)=v(£) and vy, =P,; then v(a,)=+v(Kp), WS) W¢t) and W(S+¢)
=v[(ay,+Kpg)x"+ ... [=v(ay,+Kp)+7,.
Besides, v(S), v(¢) and v(S+¢) belong to the same class (mod G*) not coincid-
ing and therefore V(S +£) -inf7{V(S), v(¢)}.

N ~, ’ .I ’ v’ ;
Now, let Sand £ be as above and 8" —u’ x1~ ... +a  xi, t/!=Kyxhr+ ...
Yy Tk By

. s S’ . iy
+ K, x%. We'll prove that v+ 5o) =inf{v( S ). V(e

VO Sy oSS (St ST () = inf{SE), WSO} v(#t')

—infp{v(a, X7 b KGO v X ) (KB b O () ()
ity {via,, K )0, Vi, Kn)+1E—vi(Kn)— B v(K;) B,

where v, +B € C,, v,+B,€Cy and p, p belong to I,
According to remark 4 (p. 10), the classes (mod G*) of p B, y, coincide;
likewise the classes of the elements p—B, and y; coincide, too,
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Also as we proved in (iii) of Theorem (p. 13, 15) it holds
inf;;{vl(u.“KBi)—{»—p, "1(‘1,{Kﬁ.)+“}'—vl(Kﬁ.)*Bx_"l(Kﬁ‘)—B;
=infz{v,(a, )+ "I(Kﬂ;)*/’ -V(K,)— By ”VI(KB;)—B"s
‘\(‘E;”*W(Kﬂ‘)*‘U“Vl(KBJ_BI “'1(KB;)_B;}
=infz{vy(a,)+v,~ vi(Kp)—B. \'I((‘,;)+Y|—V1(Kﬁ;)—B;}
. S S'
= lﬂfa—{\'(vt” ). \'(‘t,—)}
The proof is over with the remark that v is on G.
Indeed, if we get the polynomials «ax', where « runs through K, then
v(a) € G* and covers the whole group G*. Hence v(a)+vy, for all o will give

us the corresponding class C,. We proceed in the same way for all y into
the system I' of representatives and cover the group G.
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