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HYPERGRAPH CHARACTERIZATIONS OF k-TOLERANCES

JUHANIT NIEMINEN

Relations called k-tolerances are considered as hypergraphs. The connection between
k-Helly property and k-tolerances is given and the complement of a hypergraph is constructed.

An undirected graph G- (V, E) without loops and multiple lines illustrat-
es a binary tolerance relation, briefly a 2-tolerance, 7, on the point set V.
The classes of 7, are the maximal cliques of G[3]. Also a hypergraph H=(V, &)
can be interpreted as a 2-tolerance relation, if A is conformal, i. e. the maxi-
mal sets in & are the maximal cliques of a graph £, derived from H. A hyper-
graph A (V, &) is conformal, if its dual AH* satisfies the Helly property, and
thus the Helly property is associated with a 2-tolerance on V. These observa-
tions concerning 2-tolerances given by Zelinka in (3] can be generalized for
k-tolerances introduced in [2| and the gencralization work is the purpose of
this paper. As a by-product some properties of hypergraphs are also given.

A k-ary relation 7, on a set V is a k-tolerance on V if (a,..., @)€T,
for every a¢V (reflexivity), and if (a,,..., a,)€¢ T, implies that (b,,..., b,)€ 7T,
for all £ clements & from the sct {a,, ... a,} (generalized symmetry). The
k-tolerances on V' can be characterized by means of coverings (set-systems)
of V called t,-coverings. A family #°, -{V,, i€/}, wherc /, is an index set,
of subsets V,, of a set V is a t,-covering of V il the following conditions
(1)—(3) hold

(1y V- u{V,liel,} (i. e. #°, is a covering of V);

(2) V,d&V,, when it jand i, jel,:

(3) if a set N0V is not contained in any set of #, there exists then
a k-sequence a,,... a, of elements from N (not necessarily distinct) such
that {a,...., a,} is not contained in any sect of #,.

The correspondence between k-tolerances 77, on V and t,-coverings %7, of
V is the following: the classes of 7', constitute a t,-covering of V, and every
t,-covering #, of V determines a k-tolerance 7', on V having the sets of 7,
as its classes [2, Th. 2|. Note that a te-covering of V is also a t,-covering
of V when 4 ~=k, but a t,-covering necd not be a t,-covering for #<k; this is
a consequence of the condition (3). In this paper we shall consider k-foleran-
ces on a finite set V only.

A hypergraph is a sct-system, H -(V, &) where Vis a finite set of points
of H, the family & {£,,.... E,} is a collection of disjoint nonempty subsets
of V called the lines of H, and V  11{£, E,€&}. The collection of all maximal
sets in & is denoted by ... A subset C.-V in a hypergraph H=(V, &) is
called a clique of rank r, if either |C <<r or |C| -r and cach subset of C
with cardinality r is contained in at least onc linc of /7 [1, Chapt. 19:2]. A
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hypergraph /,=(V, &) is the hypergraph of a k-tolerance 7, on Vif & is the
t,-covering of V' corresponding to 7, (i. e. & is the family of all classes of 7).

Theorem 1. A subset CcV is a class of a k-tolerance T, on the set
V if and only if Cis a maximal cliqgue of rank k in the hypergraph
H,=(V, &) of T,.

Proof. Let C be a class of 7, on V such that |C =k. Because the
lines of A, are the classes of 7, C is a line in A, and thus trivially each
subset of C with cardinality %4 is contained in a line (=C) of H,. Hence Cis
a clique of rank £ in A,. If C is not maximal, then C=C" properly and every
set of & elements from C’ is contained in some E¢&. The proper inclusion
CcC’ implies by (2) that C’ is not contained in any £ from &, and thus C’
is a set M of (3). But this is impossible because every k-:lement set from C’
is contained in some E€¢&. Hence C is a maximal clique of rank 4.

Assume conversely that C is a maximal clique of rank £ in a hypergraph
H, of k-tolerance 7, on V. Because every k-element set from C is present in
some E¢é&, all £ elements from C are in the relation 7, and thus C is present
in a class £ of 7,. But E is a maximal clique of rank &2 in /, as shown
above, and then C— E and the maximality of C implies that C =F£. Thus C is
a class of 7,. This completes the proof.

Let H-—(V, E) be a hypergraph with V={v,,...,v,} and £ {E,. ... E,}.
In the dual hypergraph /*—(E, V) of H the point-set £ is the set {e,, ... e,
(corresponding to £, ... E, in H) and the line set V is the family {V,, ... V,
(corresponding to ©,...., ©,), where V,={e;|i<=m and v,¢E, in H}. A family
{M,|i€l} has the Helly property, if J—/7 and M, M, for all i, j¢Jimply
N{M; jeJ}+ [1, Chapt. 17:3]. We shall say that a family {M,|i¢/} has a)
k-Helly property if Jc/ and My, 0 Mpu ... (1 My, + @ for all j,...., jkeJ
imply (1{M; jeJ}=+ . Thus the Helly propertyv reported above is a 2-Helly
property, and as it is well-known. the convex subsets of an Euclidean n-space have
the n+ 1-Helly property. Now we can prove

Theorem 2. In a hypergraph H-—=(V, &) the family &, is a t,-cover-
ing of V if and only if in the dual H K —~(En, ¥") of Hy,o=(V. 8. the
family ¥ satisfies the k-Helly property.

Proof. Let &,.={E; i€/} be a t,-coveringof V., ¥ —{V, i¢L} and J=L
such that V, N ... NV, =@ holds for all j1, ..., jkeJ linow " {V, jeJ}=0Q,
there is no element e, ¢ N{V;|j€J}, which implies that the set N = {v; j¢J}
is not contdined in any set from &, in /. Because &,.. is a t,-coverning of
V, N contains by (3) a k-sequence @, ..., ¥, not contained in any E,¢ &,
whence the corresponding inter-section in H  isV,; (1 ... V, =@ for
Jl.... jkeJ. This is a contradiction, and hence 1 {V;|j€ s} and the family
¥ has the k-Helly property.

Conversely, let the family ¥ of H have the k-Helly property. The con-
ditions (1) and (2) hold for & because H is a hypergraph and &, contains

only maximal sets. Let V=V, NqCF, for any E,¢&nax and let every k-sequence
of V be contained in some E;¢ E,,,. This implies that V; 1 ... N V,+@ for
all vy, ... v;,¢N.Because of the k-Helly property of ¥, then N{v, v;¢ N}+ (@,
and thus there is a set £, € &nay corresponding to e € N{v, v;¢ N} such that
Nc E,. This is a contradiction and so N contains a k-sequence not contain-
ed in any £,¢&,.,. whence also (3) holds for &,.c and it isa t,-covering of V.
This completes the proof.
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A further connection between a hypergraph and its dual is a direct corol-
lary of Theorem 2 and hence its proof is omitted:

Corollary. Let E be a tv,-covering of set V, H - (V,&) the correspond-
ing hvpergraph, h*=(&, %) its dual and ¥ wmix a t4,-covering of &, where
h—minlk & is a t,-covering of V) and d minlk ¥ ..« IS a t,covering of
E}. Then h d if and only if & has the h-Helly property.

Next we present a result on representative graphs. Let H/=(/£, ¥7) be a
hypergraph with ¥~ [V, ..., V,}. The representative graph of / is an undi-
rected graph with points v,,.... v, corresponding to the lines of /7, and v, is
adjacent to v, whenever V, (| V,;+ (». In [1, Proposition 17.1} it is proved that
a graph G with a point-set V and a family & -{F,,.... E,} of subsets of V,
where (a) every £, is a clique of G and (b) every point and line of G is cover-
ed by at least one £, is the representative graph of the dual /7* of the hyper-
graph A —=(V, &). Conversely, if G is the representative graph of the hyper-
graph H=(E, {V,,.... V,}), then the sets in the dual /7* —(V, {E,,.... E,})
have the properties in (a) and (b) above. Now we can generalize the theorem
on representative graphs of maximal cliques of a graph (i. e. of ty-coverings of
a set [2, Thm. 12]).

Theorem 3. A graph is the representative graph of sets in a t,-cover-
ing of a set VV if and only if there is a family {E;|j¢J} of cliques of G
such that

(i) each line of G is covered by an Ej;

(i) {£, j€J} satisfies the k-Helly property.

Proof. Let G be a representative graph of the sets £; in a t,-covering
& of a set V. Then the pair (V" &) determines a hypergraph /7, in the dual
H*=(E, ¥") of which the family ¥~ ={V,, ..., V,} has the k-Helly property (ii).
According to [1, Proposition 17.1] reported above, the sets in ¥ are cliques
of G and satisfy (i).

Conversely, let {£,]j¢/} be a family of cliques in G satisfying (i) and (ii).
Let further £ - {v,}, i=1,..., n. Then & ={E; je JyU{E,, ... E,}satisfies both
(i) and (ii). According to [l, Proposition 17.1], G is now the representative
graph of the dual H*— (£, ¥") of H=(V, &). Because & has the k-Helly pro-
perty, the maximal sets of ¥ .. in ¥  constitutute a t,-covering of E. But
clearlv V, —={e;} 1/{e; v, € £, in H} of ¥~ is maximal in ¥7, whence ¥ =¥ max, and
thus G represents the sets of the t,-covering ¥~ of £. This completes the
proof.

Next we consider partial hypergraphs. A partial hypergraph D=(P, A7)
of a hypergraph F/--(V, &) is generated by a subfamily A4 =& and P-—
U{E,| E, € A}. A subhypergraph F--(B, #") of H generated by BCV has as
the line set ¥ ={£, (1B E;¢& and E, 1 B+ Q}.

Theorem 4. Let H -(V, E) be a hypergraph, where & satisfies the
d-Helly property, &max be a t,-covering of V such that h — min{k Emix is a
1,-covering of V}, and 2<d<h. Then H contains a partial subhypergraph
D (M, X)), where V" has the h-Helly property but not the d-Felly property.

Proof. When &, is a t,-covering of V, there is a set M containing &
points, M@E, for any FE,€&nax and arbitrary 4£-1 points from M belong to
some £, €& ma. Let us consider the partial subhypergraph 0 - (M, A7), where
A" contains all maximal sets of type M £, E, ¢ &, without duplicates. Then A~
contains 4 sets /|,... FE, such that each of them contains exactly A-1 disjo-
int points from M. Now, because £ contains A-1 disjoint points of Mand M con-
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tains % disjoint points, the intersection of all £-1 sets £ from .4 is nonempty
and ({£) E ¢4} =(), whence .4 satisfies at most k-Helly property. Because
there are £ sets in .4, it satisfies the 4-Helly property, and the theorem
follows.

A set S=V in a hypergraph H=(V, &) is strongly stable if | S E; <1
for every E,¢&. The maximum number of poins in a strongly stable set of H
is denoted by a(/7) and this number is called the strong stability number of
H. The covering number p(H) is the least number of lines of / that cover
all points in AH. The following theorem presents a connection between a(/*)
and p(AH*) for a hypergraph H.

Theorem 5. If a hypergraph H=(V, E) contains a partial hypergraph
H' =(V’, E') with a t,-covering &' of V', where h=3 and h—min{k|&" is a
t,-covering of V'}, then H contains a partial subhypergraph D= (W, F) such
that o(D*)=1 and p(D*)=2.

Proof. Let A"=(V’, E*) be a partial hypergraph of the theorem. Because
&’ is not a t,_;-covering of V’, there is a subset N=V’, N is not contained
in any set from &’, such that any A-l-element subset of N extends to a mem-
ber of &’. Hence any #A-element subset W of N, Wdé’, with # ={F hA—1
= | F and Fc W} constitutes the partial subhypergraph D, where F, | F,=Q.
Thus p(D*)<2. Clearly p(D*)=2, and so we obtain p(D*)=2. Obviously
a(D*)=1, and the theorem follows.

Let v(/7) denote the maximum cardinality of a matching of a hypergraph
H and &(H) the transversal number of /. The hypergraph /7 is balanced if
and only if (D)=¢g(D) for every partial subhypergraph D of A [1, Thm. 20:5].
On the other hand, v(D)—-§(D)<=u(D*)=p(D*). Now, Theorem 5 above shows
that a balanced hypergraph /A can contain only such partial hypergraphs
H =(V’', £E'), where £ is a t,-covering of V', whence /7 is conformal.

As shown by Zelinka [3], every graph G- (V, E) corresponds to a hyper-
graph H=(V, &), where & &, is a t9-covering of V consisting of all maxi-
mal cliques of G, and vice versa. In particular, the lines of G show all pairs of disjoint
points which are in the 2-tolerance relation determined by the t,-covering of maxi-
mal cliques of G. The complement G, of G is the graph G, = (V. £_), where
(a, bYeE, <>(a, b)¢ £ and a+b. If E-{E;, i¢l} is the family of maximal cli-
ques of @, then the family £, of maximal elements in{S§ S -V and S[1£ =1
for any £¢d&} is the family of maximal cliques of (.. Thus the complement of
a hypergraph H =(V, &), where & =&nax is a 19-covering of V, is H.=(V, &)
with &, given above. Analogously, every hypergraph H—=(V, &) with & =& .,
corresponds to a “graph”, the maximal cliques of which are¢ the sets in é&.
Unfortunately, the *“lines”™ of this “graph™ have not a simple pictorial illustra-
tion, when & is a t,-covering of V with 2=-3; all points a,,..., a,€E €&,
where at least two points a, and a, are disjoint, constitute a “line” of the
“graph”. In any way, the analogy offers a way for constructing the comple-
ment /. for a H—(V, &), where & =& mnax is 1,-covering of V with 2-—-min{k &
is a t,-covering of V}. We put H,.—=(V, &,), where &, is the family of maxi-
mal elements in {S'S—Vand S E =#k-1forany E¢ &} Clearly U {S|¢&.j=V.

Let us consider as an example the hypergraph H—=(V, &) with V={a, b, ¢}
and & ={E,, Ey Es}, where £, {a, b}, Ey~{b, ¢} and E, -{a, ¢}. As easily
seen, & is a ty-covering of V. According to the definition above, the family
&, of H, contains only one line £, {a, b, ¢} and thus &, is a t,-covering of
V. The example shows that & and &, need not be t,-coverings of V with the
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same value of 4. According to the construction, £, —=FE uax, and thus £, is a
t,-covering of V for some value of 4.

A strong g-colouring of a hypergraph H is g-colouring of the points of
H such that no two points in the same line have the same colour. The
strong chromatic number y(/4) of A is the smallest integer for which there is
a strong g-colouring. Now we can prove the Nordhaus-Gaddum theorem for
hypergraphs.

Theorem t. Let H (V, &) be a hypergraph with & =&, v its strong
chromatic number, y, the strong chromatic number of H.,and 'V |=p. Then
Np=v+v.=2p and p-vyy.= p*

Proof. l.et H be g-chromatic and V..., V, the colour classes of H,
where |V, —p. Then Ip,=p and maxp,—-p/q. Every V, is contained in aline
of H,,whence y,—maxp, —~p/g. Thus vy, -p. According to the relation between
geometric and arithmetic means, 2\p—y+vy. Clearly y+v, —2p and the exam-
ple about / and its complement /{, above shows that y(f1) 3 v(H,), whence
the equality can also hold in vy + v, < 2p. Also the validity of yy,=p? is
obvious.

Note that the limitation to hypergraphs with & &, is not essential,
because the strong colouring of A is determined by the lines in &nax.
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