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CHARACTERISTIC CLASSES OF PARABOLIC FOLIATIONS
AND SYMMETRIC FUNCTIONS

SERGE L. TABACHNIKOV

This paper deals with homogeneous foliations, that is foliations which are
defined by an explicit construction and are very convenient for the purposes
of the theory of characteristic classes of foliations. The construction of homo-
geneous foliations is as follows. Let G be a Lie group, / its closed subgroup
and n its discrete subgroup. The left cosets of / constitute a foliation on G
which is invariant under the right canonical action of G on itself. There arises
a foliation on G/'m and this is the homogeneous foliation. We denote it by
F (G, H, n). Its codimension is equal to dim G/H.

The normal bundle of # (G, f, n) is trivial and is trivialized canonically
if an isomorphism q'f) ~R¥ is fixed (here g and [y are the Lie algebras of G
and H, and N -dim G/ F). Recall that the characteristic classes of codimension
N foliations with trivialized normal bundles correspond to the (continuous)
cohomology classes of the Lie algebra W, of formal vector fields in RV; they
take values in the de Rham cohomology of the total manifold of the foliation
(see [1]). More algebraically, there exists a homomorphism «:/H*(Wy:R)

~H*(FI 5 ; R), where FT, is the homotopy fibre of the natural map from the
Haefliger classifving space BI', into BO(N).

A homogeneous foliation # (G, H, n) is called parabolic if G is semisimple,
H is parabolic and G/n is compact. A parabolic foliation is called Grassman
foliation if G~ SL(n+k,R) and H is the isotropy group of a point under the
natural G-action on the Grassman manifold G, of n-planes in R**#(in other
words A is a maximal parabolic subgroup of codimension rnk).

The computation of characteristic classes of homogeneous foliations was
initiated by C. Godbillon and J. Vey in their well-known paper [2], and
was continued by a number of authors [3 8]. This paper is within this frame-
work and it is a detailed exposition of the results appearing in [7, 8].

The paper consists of two parts. In the first part (Sections 1—3) we deal
with parabolic foliations #(G, H, n) with non-maximal parabolic /. Our main
result here is

Theorem A. All characteristic classes (of positive degree) of parabolic
foliations # (G, H, n) with non-maximal parabolic H are trivial.

Note that this theorem contradicts the example given at the end of
paper [6]. But this example is independent of the main body of [6] and we
think that it could be refuted by a direct computation.

In the second part (Sections 4 7) we deal with Grassman foliations. The
simplest kind of these, that is Grassman foliations with £ -1 was investigated
in [3;4] (one could call this foliations projective because Gy, ~ PY). By means
of projective foliations in particular it was proved that dimIma -2¥' And
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although D. B. Fuchs [9] later proved that « is monomorphic it remains
interesting to compute the dimensions of the subspace in A*(FI'y) spanned by
the characteristic classes of homogeneous foliations and of the subspace in
H*(W,) spanned by the elements defining trivial characteristic classes of ho-
mogeneous foliations. D. B. Fuchs conjectured in [3] that the latter space co-
incides with the kernel of the characteristic homomorphism of the projective
foliation but D. Baker [5] proved that this conjecture is false. We generalize
the results of D. Baker in the following way.

Let NV have p different decompositions into the product of two factors:
N-nk.i=1,...,p; n;>k and let d; -=n;,—k,. Let A be the subspace in H*(W,)
spanned by the elements of the Vey basis #,¢, with |/ =N; let B—A be the
space of cohomology classes of W, with corresponding characteristic classes
being trivial for all Grassman foliations.

Theorem B. dim(A/B) -x2%.

Corollary. The dimension of the subspace in H¥FT,), spanned by
the characteristic classes of Grassman foliations, is ~32%.

Remark. D. Baker [5] considered the case when N is even and p—=2
with the decompositions N-—-1.N-2.N/2.

To state our next result fix a multi-index /=(i,...,{,) and a number d
and let C(/,d) be the space spanned by the classes #,cV“p(cy, ..., cy) where
p is any polvnomial of weight 4.

Theorem C. For every [.dimC(/,d)/C(l,d) B=[d/2]+ 1.

Remark that dim C(/. d)=p(d) that is the number of partitions of 4. Thus
among characteristic classes corresponding to the elements of this space there
are many which are trivial for all Grassman foliations.

The proofs of the results of the second part mostly consist in the compu-
tation of characteristic numbers of complex Grassman manifolds. Our main tool
for this computation is the combinatorical technique connected with symmetric
functions [10]. As a by-product of it we obtain the following result.

Theorem D. The bordism classes of complex Grassman manifolds are
lineary independent over C.

We also obtain some new identities for symmetric functions (see Theorems
E and F in Appendix).

The author expresses his deep gratitude to D. B. Fuchs for stating the
problem and being a great help in the process of the work and to A. V. Ze-
levinsky who introduced the author to the theory of symmetric functions.

1. Topological reformulations. Here we show that the characteristic
homomorphism of homogeneous foliations coincides with a cohomology homo-
morphism induced by a certain principal bundle map. The similar technique
was used by a number of authors (cf. [3—6]).

The characteristic homomorphism of # (G, H, n) splits into a composition
of two homomorphisms H*(Wy) -~ H*(q) - H*G/n). The latter does not depend
on H and it is monomorphic if G is semisimple and G/n is compact. That is
why we shall be concerned with the first homomorphism H*(W ,)—H*(q)
which is induced by a homomorphism ¢:q—+W,. The construction of ¢ is as
follows. G acts canonically on G/H thus giving a homomorphism G—Diff (G/H).
Its infinitesimal form in a fixed formal coordinate system is ¢ (all this can be
found in [1; 3]).
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Now we replace ¢ with its complexification ¢“:q°—W?<. (cohomology are
also taken with complex coefficients). This does not change the essence of the
problem because /1*q; C) ~ H*(q; R)(X)C for everv Lie algebra g.

The homomorphism ¢° corresponds (in the sense described above) to the
complex foliation # (G¢, H¢), where G° and H° are the complex Lie groups of
the algebras g¢ and §° In fact this foliation is a bundle and it is induced by
the O-dimensional foliation on G¢/H°".

Denote the inverse image of the 2/V-base skeleton in the classifying prin-
cipal {/(V)-bundle by X,. Recall that H¥(W,) ~ H*(X,) [1].

To compute the characteristic classes of the O-dimensional foliation on
G H° we must consider the classifying bundle map from the principal tangent
GL(N, C)-bundle T(G/ H) ~G¢/H into U(N) ~Xy »sk,yBU(N). Then the corres-
ponding cohomology homomorphism FH*(W ) —~H*(T(G/H)) defines the cha-
racteristic classes [11, Theorem 10. 9].

Note that the adjoint F¢-action on g¢/f)° defines a representation H°—GL(N, C).
The following statement is easily verified.

Proposition L.1. T(G/H) ~ G <15 GL(N, C).

We conclude that there exists a bundle map from G° -G H® into
7(G° H) —~G/H . Thus we obtain the through bundle map p from G° -G/ H°
into X, sk, BU(N). Let G, be a maximal compact subgroup of G° with the
real Lie algebra g, Using H*G) ~ H*(G,) ~ H*(g,) and g5 ~g° we conclude
from the above arguments that p*: H*(Xy)— H*(G) is a topological analogue
of @*: H*(Wy)— H*(g). .

Return to the homomorphism ¢:q-+W, which corresponds to a parabolic
foliation.

Proposition 1.2, ¢ is monomorphic.

Proof. It is easily seen that the kernel of g—a(G £) is the intersection
of all subalgebras conjugated with [). This intersection coincides with the inter-
section of all Kartan subalgebras, hence it is trivial. Our statement now follows
from the fact that G-action on G/H is analytical. Q. E. D.

Recall that W, has the subalgebra [, of vector fields with the trivial
0-jets. It is obvious that ¢ (f)— L, Recall also that g/ (N)<-L, as the subalgeb-
ra of linear vector fields. Let f—¢ '(g/(NV)) and f, a compact form of f
with a compact Lie group F,.

Proposition 1.3. F, is a maximal compact subgroup of H".

Proof. Consider the homomorphism from A into the infinite dimensional
group o of formal origin preserving analytical isomorphisms of CV which
corresponds to % "~ L& Our statement follows from Proposition 1.2 and
the fact that {/(N) is a maximal compact subgroup of o (I, 10. 2]. Q. E. D.

Since there exists a natural bundle map from G, G, F, into G°—G/H*
which induces a spectral sequences isomorphism we obtain the through bundle
map g from G, ~G,/F, into X, sk, BU(N). The above arguments show that
we can identify ¢ with the bundle map corresponding to © (g. /) (W, gl(V)).
Thus we shall view g also as a topological analogue of ¢. -

Example. Let # (G, H. n) be a Grassman foliation. Then G, -SU(n+ k),
F, ~ S(U(n)< U(K)) and G,/ H ~ G,/ F, ~ CG,, The subalgebra o(q) is generated
by the vector fields 0, p, &£, and e, where €; ~ XuuX,3XajDup, V,j— La Xja Ofas
g,  Xpxp dg; with the only relation £ p, - X, g, (here x, are coordinates in
R"‘, -7/ n, l\] R; d[/ ()()X,/).
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Let us summarise the results of this section, We replace the homomorphism

:q W, with the principal bundle map from G, ~G, F, into X, —sky,BU(N).

The corresponding base map is classifying for the complex manifold G°/H° and

the corresponding fibre homomorphism F,—~U(N) is assosiated with ¢:(q, f)—
(W gl (V))-

2. Three technical results. The following result is well-known.

Proposition 2.1. Let a:G,—G, be a compact Lie group homomorphism.
The image of every primitive generator of H*(G,) under u* is a linear com-
bination of primitive generators of H*(G,).

Proposition22. The ring “surviving” in the left column of the spectral
sequence of G,— Uy F, is a quotient ring of H*G,) and it is generated (as
a ring) by some linear combinations of the primitive generators of H*(F,).

Proof. The ring we are concerned with is the image of H*(G,) in H*(F,)
under the inclusion i: F, G, Hence the statement follows from Proposition
2.1. Q. E. D.

Proposition 2.3. Let G be a complex reductive Lie group and H its
parabolic subgroup. Then dim H'(H)>dim H'(G).

Proof. We shall use the following formula: H‘(G H)=H*BH)/(i*HYBG)),
where i is the inclusion =G (see [12]). Since G/H is a projective algebraic
manifold H¥G/H)+0. So *H*BG)+ H*BH).

Consider the spectral sequences of the universal G and / bundles. Note
that the transgressions in these spectral sequences are bijective. Since H%BG)
and HXBH) are the E’"Otermc and. H*(G) and H'(H) are the FEY'-terms,
FHYG)+ HY(H). : )

Now consider the spectral sequence E of H-—-G—-G/H. We have
dim HY(G) =dim £%' +dim £'°.  Since HYBH)-=0, E."=0 and so dim HY(G)
=dim E%'. But E%'=/*H'(G), so dim H(G)<dim F'(H). Q. E. D.

Apply the above proposition to the nested parabolic subgroups Hy,— H,=G.

Corollary 2.4. dim H'(H,)—dim HY{G)= 2.

3. Proof of Theorem A. We return to the situation appearing in Sec. 1.
Recall that g is the bundle map from G,—G,/F, into X, sk, yBU(N) corres-
ponding to the parabolic foliation .# (G, /4, ©) with non-maximal H.

Proposition 3.1. The restriction of g* on the right column of the
E_-term of the spertral sequence of X N—-sk.zNBU( N) is trivial.

Proof. Let 'E be the spectral sequence of G,—~G, F, Assume that
g%a)+0 for some a from the right column of E. (of the spectral sequence
of Xy —skyyBU(N)). Since 'E.. satisfies Poincare duality there exists such an
element B¢ 'E%" that Pg*(a)is a non-zero multiple of the top dimensional class
y of 'E.. Note that vy is a multiple of all generators of H'(F,).¢ EY'.

By Proposition 2.1 g%(a) contains not more than one linear combination
of the generators of /'(F,). By Proposition 2.2 among the generators of 'E%-
there are not more than dim /(G,) linear combinations of the generators
of H'(F,). And finally by Corollary 2.4 dim HYG,)=dim H(G°)<dim H'(H)—1
-dim H'(F,)—1. Thus Bg*(a) can not be a multiple of all generators of
HY(F,). Q. E. D

Now we can prove Theorem A. It follows from Pittie's theorem [6]
that every characteristic class of a parabolic foliation is represented by some
element of the right column of the E.-term of the spectral sequence of
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Xy—SkyyBU(N). But by Proposition 3.1 every such class is trivial. Thus we
have proved our first main result.

Theorem A. All characteristic classes (of a positive degree) of para-
bolic foliations # (G, H, n) with non-maximal parabolic H are trivial.

4. Further topological reformulations. Now we begin to study Grassman
foliations. A complex Grassman manifold of n-planes in C*** will be hereafter
denoted simply by G, According to the philosophy of Sec. 1 we are led to
consider the bundle map g from SU(n + k)—Gn.x into Xy —skyy,BU(N). We re-
place the former bundle with U(n)< U(k)—U(n+ k)-~Un.x: this corresponds to
working with the foliation on SL(n+k) <R/nm whose leaves are of the form
L <R, where [ is a leaf in SL(n+k)/n [5]. Then the map g is induced by the
representation of U(n)x< U(k) on C" which is the tensor product of the cano-
nical and the conjugated representations.

Recall that the generators of H*(U(N)) are denoted by 4, ..., h4,; let
Civenny cy be the corresponding generators of F1*(skypBU(N)). Also let €y,...,6,
and 4,, ..., d,(n—=k) be the generators of /*(U(n)) and H*(U(k)) and let
X ooy XpoVys oo oy y,, be the corresponding generators of /7*(G,.)=C|x,
Vil (Zx“ya) a+B—-1,..., n-+ k.

Propoentmn 4.1. Let ﬂeHJN(skaU(N)) 1) g*h,a)+0 if and only
if g%(a)+0, k+n and 1=(1,2,..., &, J;.. Jp) wWith R<H<- - <Jp=n.

2) Let [,,....1; be mltiinde xes of the typ’ described in 1) and g*(a)=+0.
Then g*(a,h,lu+-~~+athqa):0 if and only if a,=--- —a,- 0.

Proof. First of all we must note that the “if” part of the first statement
was proved by D. Baker [5. Our proof proceeds along the lines similar to
those of Baker; in the “only if" part our proof relies on Proposition 2.1.

We start from the following relation: g*(c¢)=kx,+(—1)ny,+ products
(see [5]). Since by Proposition 2.1 g*(k,) is product-free g*(h[)=ke,-+(—l)"nd[.
Let £ be the spectral sequence of U(n+k)—G,. As it was pointed out in the
proof of Proposition 22 the left column of E. is the image of H*(U(n+k))
in A*(U(n)x U(k)) under the inclusion j: U(n)XU(k)—-U(n+k) The universal
bundle map assosiated with j corresponds to direct summation of bundles. Let
2, be the ring generators of H*(BU(n+k)). Then by Whitney sum formula
J¥(2;)) =Exayp, a+PB =i Thus the image of the i-th primitive generator of
H*(U(n+k)) under j is e,+d,; (once more there are no products by Proposition
2.1). Thus the ring E%" is genereted by e, +d,, ..., e,+ds €4iyy..., €,

If g%(h,a)+0 then there exists such an element BeEY" that Bg*(h, a) is
a non-zero multiple of the top dimensional class of E.. Since & (hya)= (ke
+nd;)...(ke; +nd;)g*(a) this can take place only if n>k and / is of the
form required.

To prove the second statement of the proposition let n=a ks a+ - +aqh, a
and J,=/,—(1,2,..., k). Note that g"‘(/u) is a product of ceveral ey w1th
kR<j<n. If n+0 there exists such a class Be¢A* (e, ..., €)= E% that
Bg*(ahs + - kaqh,q) “€piy-..€, Set y=P(e,+d,)...(e,+d,). Then yg"‘(n) is
a non-zero multiple of the top dimensional class of E.. Q. E. D.

The point of the above proposition is that instead of computing the cha-
racteristic classes represented by the right column of E.-term of the spectral
sequence of X, sk, BU(N) we can compute the corresponding characteristic
numbers of (:ra«man manifolds,
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5. Characteristic classes of Grassman manifolds. From now on we shall
use the descriptton of H*(G,..) as a quotient ring of the ring A of symmetric
functions. Recall some basic facts about A (the reference for this is [10]).

Given a partition A=({;,...,[,) let S, be the corresponding Schur func-
tion. These functions constitute a basis of A. Let p, be the power sum of
degree i and for any partition p=(m,,..., m,) write py=pm ...pm.The func-

tions p, also constitute a basis. Let /#, be the complete symmetric function
of degree i and e; the i-th elementary symmetric function. Define 4, and e, by
analogy with p,; A, and e, constitute two other bases in A.

Define an involution £ in A by £ (S;)=3S,-, where A" is the partition con-
jugated to A. Then ¢(p;)=(—1)y 'p,. Define an inner product in A considering
S» to be an orthonormal basis. The basis p, is orthogonal and ¢ is an iso-
metry.

We identify A with the ring H*(G....): S, corresponds to Schubert cocy-
cles under this isomorphism. /7*(G,x) becomes a quotient ring of A which is
spanned (as a space) by S, with »—=(/,..., l,), [;=n. Fix the notation n for
the partition (n,...,n) of nk. The function S, corresponds to the orientation
cocycle of G, and the projection A—H2V(G,.) is described by the formula
X— <X, SK>SR‘

Let A be the ring A[n, k] and define an involution t: n——n, k——*k,
x—t(x) for x€A.

Proposition 5.1. There exist such elements ch;¢ A that

1) ch; corresponds to the i-th component of Chern character of the
tangent bundle TGp..

2) ch;=—(n+k)p,/i! for odd i.

3) t(ch)=(—1) ch,.

4) The degree of ch, in the variables n and k is not greater than 1.

Proof. Let vy, and y, be the canonical bundles of dimensions » and &
over Gpx Then TGpr=Y,X 7V, and chy,=n+ZXp/i!. Since v,+7y, is trivial
chy,=k—2Zp;/i!. Hence ch TGupr=(n+X(—1Yp,/i")(k—Zp;/i!}. From this our
statement follows. Q. E. D.

6. Proofs of Theorems B and C. Assume that the dimension N permits
g decompositions N=n;k,i=1,...,q with n, =%k, and n,>ny,> ---. Write
n,=(n,...,n) (k times).

Proposition 6.1. There exist such partitions p,, ....pn, of N with
odd parts that

1) (pu, Sx)=0,

2) (pu,.S,.’) =0 for i<j and N>A4.

The proof will be given in the next section.

Let g, be the classifying map from G,, K into skyy BU(N) and set
C=NqKerg | H*¥(skyyBU(N)). One can eacll\ derive the following state-
ment from Propositions 5.1 and 6 1.

Proposition 6.2. dim H"V(sk?‘\BU N))/C=q.

Recall that A is the subspace in AH*(W,) spanned by #k,a with
u € H*N(skyBU(N)), B—A is the space of the classes which are trivial as
characteristic classes of all Grassman foliations and d,=n;—k; for n,>k,. Now
we can prove our second main result,

Theorem B. dimA/B—x2%.
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Proof. Let F, be the set of multi-indexes /7 (1, 2,..,, k., a , B) with
B<n, and set G,—F, F,.,. Then F, —2%, G, | -2%—2% 1. Let A A be the
space spanned b\ the classes h,a with /€U, and set B, B A,. Then A — - A;
and B— ®B. By Propositions 5.1 and 6.2 dimA, B, —=i G,|. So dlmA/B'—-Zi(Zdl
—2%y—x2% Q. E. D.

lLet us now proceed to the proof of Theorem C. Given a partition
w=(my, ...,m,) write 'p|=Xm,l(n)=r and r(p)= ~/(p). Define the func-
tion in the variables # and & by p.=(p. pY¥ S)(p“,S)

Proposition 6.3. p, is a polvnomial in the variable n—k of degree
—r(p).

The proof will also be given in the next section.

Recall that at the end of the previous section the classes ¢4, were defin-
ed. Given a partition p—(m,, ..., m,) write z‘hur-:ch,,,l...ch,,,r. Define the
function g, by g.— (ch,p¥ M, S (p¥, Sp)- It is obvious that g. is symmetric
in n and k. Set S-——n+ k. It follows that g, is a polynomial in § with coeffi-
cients depending on N. By Proposition 6.3 and 5.1 (4) the degree of g, is not
greater than |p| and by Proposition 5.1 (3) g, is either odd or even. So the
polynomial (chy, chY—+, S/ pY, So> =SV g, belongs to the space spanned

by the monomials SV, S¥=2 ..., SV-20172 |ts dimension is equal to [|p /2]+ 1.
Recall that C(/,d) is the subspace in FH*(W,) spanned by the classes
hCY-"p(cy,...,cy), where p is a polynomial of weight @. We obtain the

following result.

Theorem C. dimC(/.d)/C(l.d) B-=[d/2]+ 1.

7. Computations in the ring of symmetric functions. Recall the algo-
rithm for computation of inner products (p,, S»)— the so-called Murnagan-
Nakayama rule ([10]). A skew-hook of a Young diagram is a connected part
of its boundary with its complement being also a Young diagram. let

pw=_(my, ..., m,). Then ( pu, $) =L (1Y (pu. s, where py =(my, .. ., m,), h—v
is a skew-hook consisting of m, points and 7 is its number of rows.
Exampie. (p;, Ss (PSP 15 (pa S3) 0.

Now we shall prove Proposition 6.1. Recall that N n k., i=1, .G
n ==~k n>--->n, and n,=(n,...,n) (k, times). Write: S =n, +k Then
S, > >8,. Proceeding inductively assume the proposition to be proved for
every number <V

1) If S, is even then set n —=(S,—1,v,), where v, is the partition for which
(Pvp S(ysee -, n,__,)>-+0. By Murnagan-Nakayaina rule (Pu, Sx)+0 and
(p,..S ) -0 when i</ because s,<s,.

2) If s, 1s odd and k&, 1 then set p =(S,— 2,8 —2, v,), where v, is the
partition for which Py, S(ng ..., n, o)»+0. As in 1) p, has the required
properties.

3) If n, is even and &, =1 (in this case /=1) then set p,=(N—1, 1). Then
(pu‘.S,.l) £0 and (p,.l.S,. »=0 when j>1 and N>4. Proposition 6.1 is proved.

[t follows from Proposition 5.1 (2) that the characteristic numbers matrix
of the manifolds G, », is non-degenerate. We obtain the following result.

Theorem D. The bordism classes of complex Grassman manifolds are
lineary independent over C.

Now we shall prove Proposition 6.3. Given a partition A~ (/,, ..., l,)write
m,~l,—i+r. We say that a symmetric function is of rank ¢ if it is a linear

’
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combination of p, with r(n)=g¢ and some p, with r(u)=g¢ are involved. Given
a partition 2 of NV set p,=(p.p¥ ", SO PY, Su). '

Proposition 7.1. p. is a symmetric polynomial of rank =r(p) in the
variables m,.

Proof. Let D(x,,....x,) be Van der Mond determinant in variables x,.
We need some further results concerning syminetric functions [10].

D)y (pH. S)y=x1! D(my, ..., m,)/Ttm,!.

2) Let 8, be the operator in A dual to multiplication by p,. Then in the
basis of complete symmetric functions 6,=%k, 0/0h,.,.

3) S;,—'dt‘t(’lli ) 1).

To simplify the notations denote D(m,, ..., m,) by D and D(m,, ...,
m,—q,...,m,) by D;(g). Proceeding inductively assume p,—p,p,. Then by
properties 1)—3) above p,=Zm,(m;—1)...(m,—q+1)D,(g)ov(my, ..., m,—q

.,m,)/D and rk(p,)—~r(v). Let a=(u,, s, ...) and consider the sum X m,(m;
—1)...(mi—qg+1)D; (@) pu(m,. ..., m.—q,...,m,)/D. 1t equals to Lm(m,—1)
oo (mi—g+ 1D (@) 1y (pa, (m)+(m;_g)"i—m";)/D, which is a linear cambination
of p,(m)ED;(g)m*/D with r(y)+k=r(a)+gq.

It is easily seen that rk (XD, (q) m*/D)—=k—1.So rk(p,)<r(a)+qg—1=r(p).
Q. E. D

Now let & be a Young diagram with A —=d. Every point of . corresponds
to a pair of non-negative integers (i, /). The content C,; of the point (i, j) is
the number j—/.

Proposition 7.2

(5,00 Sx)  (N—a)!

TN S Ntar (Swpi) I (n—c,) (k+ciy).

L) €

This statement directly follows from the formula 1) of the proof of Pro-
position 7.1.

By the above proposition p, is a polynomial in n %k To complete the
proof of Proposition 6.3 it remains to demonstrate that p, contains no mono-
mials n‘k/ with i—j>r(p). But this follows from Proposition 7.1 and the sta-
tement given below.

Proposition 7.3. Let the numbers m correspond to the Young dia-
gram n (i. e. m, n+k—i). Then m[+-..+m, contains no monomials n'k’
with i —j—-r.

Proof. Set N, (/)=1"+---+!0". It is well known that N, (/) is a polyno-
mial in / of degree r+ 1. It is also clear that mi+---+m,=NJ(n+k—1)-N(n—1).
The latter difference is a polynomial in » and & of a degree not greater than
r+1 which is divisible by k2 Q. E. D.

Appendix. Some new identities for symmetric functions are represented
here. These identities are not directly connected with the main subject of the
paper but in view of the fact that the great part of their proof is already made
we find it possible to give them here.

The starting-point for us is Proposition 7.1. Let p¢A, degp=d and set
¢ (p)=(pp—4, S)/(pY, Si), where L ~=N. We view ¢(p) as a symmetric func-
tion in m;(m, =l,—i+N), where A—=(l,..., 1), with coefficients from the
field 2(N). By Proposition 7.1 rko (p)=rkp. Set A=k(N)X) A/(p,—1)=k(N)[1,
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PpPs ... and B -kR(N)XA/(p,—Ci,.)—RN)[L,pyps...]. A and B are
filtered by giving p, filtration equal to r(u). Since ¢ (p)— ¢ (pp,) for every p
and p,(m,,...,my)—C3_ , ¢ is a morphism of filtered spaces.

Proposition A.l. ¢ is an isomorphism of the filtered spaces A and B-

Proof. Since A ~ B it is sufficient to demonstrate that ¢ is injective.
Let ¢ (Xcupyu)—0, where no partition p contains 1. Then for every A satisfying
A =N, o papd i, S)=0. So Leupupy * =0. Since no partition p con-
tains 1, ¢, =0 for every p. Q. E. D.

Since for every p, g€A, rk(pg)=rkp +rkg we obtain the following
result.

Corollary A2. Let o and B be partitions of a number N. There exist
such coefficients c, that for every partition ) of the same N the following

relation holds

(Par Si)(Pp. S2) 5. (Pr.Sh)
N o\ =Xoy oy ’
(P S Y (P S

where the summation is taken over partitions y of N satisfying r(y)=r(a)+r(B).
Theorem E. Let ay, ..., a, be partitions of N. If r(a,)>r(ay)+--- +r(ay)
then I, ((pY. Si))* *(pa, Si)-- (Pa, S1)= 0.
Proof. By the previous corollary the sum above is a linear combination
of the sums X, (pa . Si)(ps, S»), where r(B)=r(ug)+---+r(u,). The latter sum
is equal to (p..pp) which is zero because {p.} is an orthogonal basis and

Pu, =P osince r(B)<r(u). Q. E. D.

Denote now by m, the symmetrisations of the monomials corresponding
to the partitions A and by p. the “forgotten” symmetric functions correspond-
ing to ». Then the basis {m,} is dual to {A,) and {p.} is dual to {e.} [10].

Theorem F. Let uy,...,u, be partitions of N. If r(uy)>r(uy)+ - +r(ay)
then X, ((pY, hOP % Pay M) (P, Bid- - Pu, Ry = o (CpYs €0 *( Pay 1) (Pa, €2)

A Pa,, ) 0.
k
The proof is the same except that we use symmetric function in variables

/, instead of functions in m,.
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