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AN ANALYSIS OF FINITE ELEMENT SOLUTION STABILITY*
P. K. MAHANTI, B. N. SAHNEY

This paper deals with the problem of finding, by the finite element method, a solution
stability of a partial differential equation and for a system o ordinary differential equations.
We will show that if the approximate solution converges uniformly in time and uniformly
with respect to initial condition, then the stability of a partial differential equation implies
that of an ordinary differential equation and vice-versa.

1. Introduction. The finite element method is a recent tool which is quite
effective in finding numerical solutions of partial differential equations [I1}].
The method has been used extensively in structural engineering [9]. Recently
some authors have reported their findings on the theoretical analysis of the
finite element method. They have developed theorems about convergence, error
estimates, etc. [3, 7). But little has been done on solution stability for partial
differential equations. We mentioned in this regard the work of Strang (7],
Fix et al. [2, 5], and others [4, 6, 8, 10].

This paper deals with the problem of finding by the finite element method
a solution stability of a partial differential equation and for a system of ordi-
nary differential equations. We will show that if the approximate solution con-
verges uniformly in time, then the stability of a partial differential equation
implies that of an ordinary differential equation and vice-versa.

2. Definitions and Lemmas. Definition 2.1. Let X' =f(t, X) be a sys-
tem of ordinary differential equations and let Z(t) be any solution of it.
Then if Y(t)=X(¢)—Z(¢t) we have Y’ g(¢ Y) with g(¢, 0)=0.

Definition 2.2. For continuous functions w(x, t) and vector functions
W(t)={w,, w,, ... w,}7, we define the norms

(2.1) | W(x, t)l = sup w(x, t),

v (01

(2.2) [Wix, t)l,= sup | wi(f).
(=0,2,.. 4

Let us consider the partial differential equation
(2.3) W, W+ flx, w, w,),

and suppose f(x, 0, 0)=0, i. e. w =0 is a solution of Eq. (2.3) and assume
that for each ¢(x) in a suitable class, there exists a solution w(x, ¢ ¢) such
that w(x, 0, ¢)— ¢q(x).

Definition 23. The solution w=0 of Lq. (2.3) is stable if for any
e>0 there exists a 6>0 such that | g(x)! <6 = ||w(x, {, q)| <e.
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Again consider the system of ordinary differential equations
(2.4) X =PYX).

Let us suppose P,0)=0, i. e. X=0 is a solution of Eq. (2.4) and further
assume that for all X, sufficiently small, there exists a solution X{(t, X) of
Eq. (2.4) such that X(0)=X,.

Definition 2.4. The solution X=0 of Eq. (2.4) is stable if for any
£>0, there exists a 8(€)>0 independent of n such that || X, ||,<0 | X(¢, x,| <&

In the sequel, we denote by u,(x, £) the approximation to the exact solu-
tion w(x, £) which is obtained by taking mesh size 2=1/n in piecewise linear
finite element discretization. Then u,(x, #)=ZX7_ u{f)y,(x), where v,(x) are basis
functions w,(x;)=29,.

Let us state some lemmas which will be needed in the next section:

Lemma 2.1. Let {y;}, i=1, 2,..., n, be the set of piecewise linear basis
functions. Let W={w,, @, ..., @,)7, w(x)=2Z @y, then ||W  =|w(x)].

Proof. From Eq. (2.2) we have

(2.5) ||@(x) |= sup | £ wWN; |

Cx£(0,n i=1
since y,’s are piecewise linear and the supremum occurs at a critical point, it
must occur at one of the nodes x, where the derivative fails to exist.
Now if @w'(x)=0 for x,<x<x;;,, then w,,—w,=0.4 i e w,,=w,

which implies that w(x)=0 for x,<x< X, since y(x,) =&, Hence from Eq
(2.5) we have

l|lw(x)| = sup | wyy, = sup |w,l
x €M) =1 i=12,....n

Substituting Eq. (2.3) in the last one, we have w@(x)|[= W . Thus the
lemma is proved.

Lemma 2.2. Let P (U) be the function obtained by the piecewise linear
finite element discretization with mesh size h—=1/n. Let flx, 0, 0)=0, then
P,(0)=0.

" Proof. Using the piecewise linear finite element discretization, the func-
tion P,(U) is defined by

1 n - ,
h(P,(U));= (U —2 - 40)+ I3 fx, ,-?1 u )y, (x), ‘ Zl u ) (x)pwAx)dx
or,
(2.6) h(P,(U));= ':T(U/— 1\ 2+ )
+hf{x*  au_, +bu;+cu;. i“—‘f"fT""-i‘—‘« , Iy

where a+b+c -1 and (d, ¢)—(1, 0) or (0, 1).

Since f(x, 0, 0)=0, from Eq. (26)we have P,(0)); =0=P,(0) =0. Thus the
lemma is proved.

Lemma 2.3. Let P,U) be defined by Eq. (2.6). If f(x, 0, 0)¢c(0, 1) and
if P,(0)=0 holds for all sufficiently large n, then f(x, 0, 0)=0.

8 Cn. Cepamnxka, ku. 2
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Proof. Suppose f(x, 0, 0)>0 for x-—= x, then there exists a neighbour-
hood (x, —p, x,+p) on which f(x, 0, 0)>>0. But then we can choose n>1/p
so that #<p and it is clear that there is an index &1~k =n, such that wy,(x)
is non-negative on (x,—p, x,+p) and zero if xé(x,—p. Xo,+p). Then

1 n n
WP, (U, — [ fix. Sut)y (), _Z‘ Y (B () (x)d x

d&“k_"”k:—l’ e(ylef_uk) )

—hf(x* au,  +bu,Ccly P X

where a+b+c—=1 and (d, e)=(1, 0) or (0, 1) and x, | < x* < Xpy, I €.
x*e(x,—p, x,+p). Since P,(0)=0, then [P,(0)],-= 0. But this says hf(x*,0,0)=0,
with x*e(x,—p. x,+p), contradicting the fact that f(x, 0, 0)>0 at that
interval.

Thus f(x, 0, 0)=0 is proved. Hence the lemma.

Finally we introduce one more definition which will be useful in the next
section.

Definition 2.5. 70 any initial function gq(x) defined on (0, 1) we asso-
ciate the n dimensional vector Q, = (q(xy), g(x2). . .. q(x,)), then u(t, Q,)
denotes the approximate solution for the equation

@ M -pPw.

(2.7) (b) with My = (v, v)),
(¢) U0)= Q.

3. Stability theorems. Theorem 3.1. Let Eq. (2.7a) have the solution
U=0 as a stable solution for all n, sufficiently large. Let P,(U) be the
finite element discretization of Eq. (2.3), then w(x, t)=0 is a solution oy
(2.3). Further, if the solution U(t) —= {u,(8), uyt), - .- u, (O} is such that
u(x, t, Q) ~w(x, t, q) for all functions g(x), then w(x, t)==0 is stable.

Proof. From Lemma 2.3, w(x, f)=0 is a solution of Eq. (2.3). Since Eq.
(2.7a)is stable for all # by hypothesis, given any £>>0 there exists a 5—=8(n,e)>0
such that Ut Q,) <e€/2 for | Q, |,<&. Let us assume that the null solution
of Eq. (2.3) is not stable. Then there exists an £€>0 such that for any 6>0
there exist #(5), ¢(x, 8) for which |¢(x)||<38, |w(x, ¢, ¢)| > & Assuming the
convergence, there exists M(e, £, ¢), t >0 and n> M(g ¢, g) such that
lu(x, t.Q,) ~w(x, t, )| <e2. Hence from Lemma 2.1 and the last inequality,
we have | U(t, Q,) ,>&/2.But || Q,|,<3, and thus the stability of the null solu-
tion of Eq. (2.7a) is contradicted. Therefore, the null solution (w -0) of Eq.
(2.3) is stable which completes the proof of the theorem.

Theorem 3.2. Let Eq. (2.3) have the null solution as a stable solution.
Let u,(x, t, Q,) be the solution of Fq. (2.7 a, b). Also let u,(x, t, Q,) con-
verge uniformly to w(x, t, q) in time t as n -~ o, for each q(x) of initial
functions. Then u=0 is the solution of Egq. (2.7a) and is stable.

Proof. From Lemma 2.2, (/-0 is a solution of Eq. (2.7a). Let €0, then
there exists N(g, ¢), n>/N(g, ¢) such that

(3.1) ux, t, Q,)—w(x, t, q)l<e'2
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Let us choose >0 such that if || g(x) <3, then w(x, 7, g) |[<e/2. Hence
from Eq. (3.1) and the last inequality we have for n>MNe, q) [|u,(x, ¢, Qp) |
< €/2+¢/2 ¢ Now using Lemma 2.1. and the last equation, we have
| Ut, Q)| .<e for | Q,|[,<d. Therefore, U=0 is a solution of Eq. (2.7a) and
is stable. Hence the theorem.

4. Discussion and conclusions. It is worthwhile to note that, given a
partial differential equation and the corresponding discretization obtained by
piecewise linear finite element method, then the stability of the null solution
is a property possessed by both or none, if the approximate solution can be
shown to converge uniformly in time. This uniform convergence is not neces-
sary for the stability of partial differential equations or for stability of the
ordinary differential equation.

Finally, we conclude by remarking that it might be possible to gain infor-
mation on the stability of solutions of partial differential equation from an ana-
lysis of a discretization which produces a system of ordinary differential equ-
ations.
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