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ON EQUIVALENT NORMS WHICH ARE UNIFORMLY CONVEX
OR UNIFORMLY DIFFERENTIABLE IN EVERY DIRECTION
IN SYMMETRIC SPACES

DENKA N. KUTZAROVA, STANIMIR L. TROYANSKI

In this paper necessary and sufficient conditions for existence of equivalent norms which
are uniformly convex (resp. uniformly differentiable) in every direction in symmetric function
spaces are obtained

1. Introduction. It has been shown in [4] that every separable Banach
space admits an equivalent norm, uniformly convex in every direction. From
a result of Shmulyan [I1] and the construction of the norm in [4] it fol-
lows that each separable Banach space has an equivalent norm, uniformly dif-
ferentiable in every direction. It has been proved in [9] that a non-separable
Banach space X with a symmetric basis admits an equivalent norm which is
uniformly convex (resp. uniformly differentiable) in every direction iff X is
not isomorphic to ¢y(I') (resp. /(")) for some uncountable set I'. The paper
[10] contains necessary and sufficient conditions for existence of such equiva-
lent norms in Banach spaces with an unconditional basis. In [6] an equivalent
lattlce norm which is uniformly convex in every direction is introduced in

LS, X, p) and as an application several results concerning the existence of
equivalent lattice norms which are uniformly convex or uniformly differentiable
in every direction in Banach lattices are given.

In the present paper we obtain generalizations of the results of [9] for
symmetric function spaces.

2. Definitions and notations. The norm of a Banach space X is said to
be uniformly convex in every direction if the conditions x,, y, 2¢X, || x,/|

L | yall—=1  xp+yal—2 and x,—y, =1,z imply || x,—,||—0.

he norm of a Banach space X is said to be Gateaux differentiable if
for any x, y¢ X with [[x[=[y|/=1,

lim +=(|| x+ 1y ||+ x—1y [~ 2)=0.

The norm of a Banach space X is said to be uniformly differentiable in
every direction if for any x, y€ X with || y|=1,

lim ' sup (' x+tyl+||x—ty||—=2)=0.

=0 x ||=l

A Banach lattice is called o-order complete if every order bounded se-
quence {x,}~ in X has a least upper bound.

A Banach lattice X is called order continuous ni for every downward di-
rected set {Xa}aa in X With Aaaxa =0, lim, || xa||=0.
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An element e=>0 of a Banach lattice X is said to be a weak unit of X
if xeX, eAlx =0 imply x=0.

A family {u,},«r in a Banach lattice X is said to be a generalized weak
unit of X provided u,-0, v¢€T, u,|Alug|=0, y+B and if x¢€.X, lx|Aluy|
=0 for all y¢I', then x -=0.

Let (S. &, p) be a measure space with non-negative measure. A Banach
space X consisting of equivalence classes of p-measurable real valued func-
tions on S is called Kothe function space if X is a Banach lattice in the ob-
vious order ( f~0 if f(s)—0 almost everywhere) and the following conditions
hold :

(i) if [f(s)|--|g(s) a.e. on S with f p-measurable and g¢ X, then feX,

(ii) if fe.X, then f is locally integrable, i.e. for everv A¢Z with n(A)
< -~ there exists [, f(s)du,

(iii) for every A¢X with p(A)<=o the characteristic function x, of A
belongs to X.

A Kothe function space X on (S, X, p) is said to be symmetric if there
exists a constant C>0 such that for any choice of finite systems {a;}?_, of

reals and {4}, {B}_, =% withp(A)=w(B)< -, i=12....,. n A NA=Q,

B;N B;== @, i+J, the following holds
Y ayxs |=C X axs.|.
i=1 y i= !
Consider /(). An equivalent norm has been defined by Day (cf. e. g
[5, p. 161])

D(x)= sup{( S 2y ) < o, €T
i=
For each subset I'y=T define a projection Pr,: (.(I") ~{.(I") by the for-
mula Prx(y) = x(y) if y€I'y and Prx(y)=0 otherwise.
3. Equivalent norms which are uniformly convex in every direction.
Theorem 3.1. Let X be a symmetric Kothe function space. Then the
space X admits an equivalent norm, uniformly convex in every direction,
if and only if X does not contain any subspace isomorphic to cI') for un-
countable set T.
Proposition 3.2 [10]. Let X be a Banach space and T : X—lo(I') be
a bounded positive-homogeneous sublinear operator satisfying the following
condition :
for any £>0 there exists a partition {T'®}7_ of the
set T such that for all x¢ X,
card({yeT®; |Tx(y)|>ell x|H=t
If we introduce a new norm in X by the formula
lx|=(lx 24+ X 2-—*Dy(TWx))?2, T®=Pr(1/R)T,
(=1

H
L R=

then for any x, v.¢X the conditions Tx, Ty,ccdl). |l x,[[|s1 [[y.ll=1.
X+ Ya|ll>2 imply that

lim (Tx,(y)— Ty (y)=0, veTl.

N 00
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Lemma 3.3. Let X be a Banach space such that the conditions x, ¥,
zeX, | x, =1, ||y, | =1, || x,+Vv,| =2 and x,—y,=z imply z=0. Then the
norm is uniformly convex in every direction.

Let (S, X, n) be a measure space and consider L,(S, X, p). Let £,=X con-
sist of all p-measurable sets, free of atoms. Define for any x¢€ L,(S, X, p)

x(t)y= sup [ x(s)ldn, te(0, oy

B(L,, u(B)=t
This function is introduced in [2].

Lemma 3.4. Let x¢L(S, X, n) and ¢, ue(0, u(S)] with t=u<co. Let
B¢X, w(B)y=u and [z x|du>x(u)—38 for some 8>0. Then there exists a
Q=B with W(Q)=t and [¢ x| du >x(t)—38.

Let X be a Kothe function space on (8, X, p). Denote for each x¢ X,
k=1, 2

D) =( [ Xt)dey™,

Put
|2 lh=Clx i+ = 2-4p3a).
k=1
It is easily seen that | . |, is an equivalent lattice norm in X.
Lemma 35. Let X be a Kothe function space and x, y.€X,
sup,(|| %, || ¥alN< o0 pa(x) =1, pa( V) =1, pilxatya)—2 for some integer k.

Then there exists a _function o(¢), t€[0, k) and a subsequence {n} of indices
so that x,(t)—u(t), v () —u(t), x,+ y,,(t)—-?z'(t) for each t¢|0, k).
Lemma 36. Let x,, y,,(Ll( , 3, n) be such that

sup ( g | xn | dn, Sf | Yaldw)<co, p(supp x,U suppy,)=k, pux.)—p

Pe( V) —p, pu(x,+V,)—2p for some integer k and
lim = sup {| [(| X, =y, ])dn }=0.

u(8)-0
Denote by Q the non-atomic part of the set |)=_(suppx,lsuppy,). Then
there exists a subsequence {n} of indices so that (x,—y,)xa—0 in measure
as n—co.
In fact, Lemmas 3.3—3.6 are proved in [6].
Lemma 3.7. Let X be a Kothe function space on (S, I, p) with the fol-
lowing property:

(*) sup u{ x >ellx H<oo for any &>0.
xf

Then the conditions xp Yum 2€X, X,—Va=2, [ x,|1—1, |Vali—1 || xa+ V.1,
2 imply zya =0, where Q is the non-atomic part of )3 _,(supp x, U suppy,).

Proof. It follows from (*) that for each x¢ X, the measure on supp x
is o-finite and therefore Q is correctly defined.
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Let x, V. 2¢X satisiy the above assumptions. Using the uniform con-
vexity of /, the triangle inequality and the diagonal procedure, we may choose
a subsequence {n} of indices so that

(H PX) P P YD) —Pi PLXa+Ya) 2P0 k=1, 2 ..,

It is no loss of generality to assume that §=Q.

In order to prove that z=0 it suffices to show that for any £>0 the
equality u({|z|>€e})=0 holds.

Let €>0. Put P={ x,—y,|>¢c}. Q.={ x,+V¥,|>€/2}. It follows from (%)
that there exists an integer M—M(e) such that p({ x,/>e8H=M, n(Q,)=M,
n=1, 2,...

Let 6,>0, 8,—0. Choose S, =8, n=1, 2,... so that p(S,)=M and

(2) ;‘ Xp+Vn du>x, +y (M)—3,

Without affecting the generality we may assume that Q,=S,. Indeed, de-
note 4,=Q,N S, We have u(Q,)=M=u(S,). Since Q is free of atoms, there
exists a B,=S,\ A4, such that p(B,)=wQ, . 4,). Consider S, =(QnUS)\Bn

Obviously, u(S))=M and Q,=S,. Moreover, by (X, Vs o, |<€/2 and
(Xa+Va)Ao, |>2/2 we get

[ Xp+yndn= ‘f Xp+ Vo AR > X, + Y (M) =5,

S
n n

In the sequel we shall assume that Q, =5,
It follows from (2) and Lemma 3.4 that

V(1) =38, (Xa+ Y s, (B) = X, Y1), tE[O, M),
This and (1) give
(3) Pl (Xn+Va)As )—2P m-
Then by (3), pml(x, + Yats,) = PakXaXs )+ P Vaks, ) Pu( XnXs,)=Pau(Xnh
P Vaks)=pu(V,) and (1) we get
(4) P Xaxs, ) =Pa P Yaks, ) =Py

By (1) and Lemma 3.5 we may choose a subsequence {n} of indices and
a function ©(¢f) so that x,(£)—ov(t), v (t)—~v(t), x,+ Y (£)—20(¢), t€[0, M]. In
particular,

(5) XAMY—UM),  J(M)—DM), x,+ y (M) —=+20M).

As above, it follows from (2) and (5) that

(6) J 1 Xaldu—t(M). [ 1y, du—st(M). [ | Xt Ya dis20M).
Define ' "

D,={x, >e/4}, E,={x,|>¢€/8}, n=1,2,...
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We shall prove that
(7) u(D, >~ S,)—0.

Since u is non-atomic and p(£,)=w(S,), D,c-E,, then there exists a 7,=§,
\.E, such that w(7,) =D, S,). Put U,=(S, I D) T, Since p(U,)=M, then

(8) [ 1x, du=x(M).

L
n

On the other hand,

[ X, dp= [ x,du+ [  x,dn= [ x,ldn+ [ “-dp
1% N DS S AT p s *
n Sn>'n nn n>'n n > "n

L ldws [l ldpt S DNS) = [ xa it g BDRNS,)-
This and (8) give u(D,\.S,)=8e ' (x,(M)— [s ' x,|dn). By the last inequality,
(5) and (6) we obtain (7).

We shall show that
9 H(PN\.S,)—0.

In view of (7), it suffices to prove that P\ S,=D,<S,. Indeed, let s¢ PN\ S,.
Since Q,=S,, then s¢PN(S,\Q,). i.e. s¢D,.

Since x,— v,=2, n=1, 2, ... then it is easy to see that
lim  sup {| [ (x,/— ¥, )du|}=0.
w(B8)—-0 n B

Thus, according to Lemma 3.6, it follows from (3), (4), (6) and the last equa-
lity that there exists a subsequence {n} of indices so that (x,—y,)xs, —0 in
measure as n—co. Therefore, W(P N S,)—0. Combining this with (9) we deduce
that p(P)=0 which completes the proof.

Lemma 38. Let X be a Kothe function space satisfying the condition
(+) from Lemma 3.7. Then X admits an equivalent lattice norm which is
uniformly convex in every direction.

Proof. Put for k=1, 2,. ..

I,={Ae¢Z; A—atom, WA)=k"', | xall=k'}.
It follows from (#) that we may define linear operators 7, : X—cy(I,), £=1,
2,... by the formula 7 ,x(A)=k"'x(a), AcT,, acA. Let x¢X. Then | T, x(A)
<|x(@)] | xali=!|xl, ice. [ TWl|==1, &=1, 2,...
lLet £>0. By (»), there exists an integer M- M(e) such that u({|x
>el| x||})=M for all x¢ X, whence p({k~'|x|>e x|}D=M, k=1,2,... Then

(10) card({AeTl,: | Tx(A) | >el|x|H<kM, x¢X, k=1,2,...

We introduce an equivalent lattice norm in X by the formula

Ixll=0ix B+ = 2-*DXTAx))

A=1
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We shall show that the norm ||| . | is umformly convex in every direction.
Let X, Vo 2€Xs Xp—YVa—=2 | X, =1 [| ¥Vl =1L [ x,+Y,l[[—2. It follows
from (10) and Proposition 3.2 that

(11) lim (Toxn(A)— T, yA) =0, A€l k-1, 2...
Then by Lemma 3.7 and (11) we obtain that z=0. In view of Lemma 3.3
this completes the proof.

Proposition 3.9. Let X be a symmetric Kothe function space on a
measure space (S, X, p) with non-o-finite measure. Then the following con-
ditions are equivalent:

(1) lim inf (| xg!: B€X wB) -t -,

t— oo

(ii) sup p({|x >e | x|}P<-o for any £>0,
X

(ili) X has an equivalent lattice norm which is uniformly convex in every
direction,

(iv) X does not contain any subspace isomorphic to c(I') for uncoun-
table set TI.

Proof. (i) = (i) Let £>0, x¢X and B={ x|>e| x||}. Since |x|
>e| x |xg then | x| —=e| x| .| xs| and therefore [xp '<e~!, whence
supy x Wi x| >¢e||x||})< o, i. e. (ii) holds.

It follows from Lemma 3.8 that (ii) = (iii).

Since ¢(I') with I' uncountable has no equivalent norm that is uniformly
convex in every direction (cf. [1]), then (ili) = (iv).

(iv) = (i). Assume that (i) is false. Since X is symmetric, then there
exists a constant ¢,>0 such that for each B¢X, p(B)< =,

(12) | xgl =ca

Since the measure is non-o-finite, then we may construct by transfinite
induction an uncountable family {B,}yr of mutually disjoint measurable sets
with finite measure so that || xz, || ~¢,>0 for each yeI'. From (12) and the

last inequality it follows that for any finite system {y,}? T, v, +v, i+j and
any system {b;}7_, of reals, n=1, 2,... we have

n
¢, max b, |= max|b,| |xg, || = Z bixs, |
i i i i=1 i
n N
max | b,| || X xp, |- max|b,| [X » || <-c, max b, ,
i i1 i i U s i

i=m]) i
i €. {Xg, fwr is equivalent to the natural basis of the space o).
310. Proof of Theorem 3.1. In view of Proposition 3.9, it is enough
to notice that it is shown in [6] that every Kothe function space on a o-fi-
nite measure space has an equivalent lattice norm which is uniformly convex

in every direction.
4. Equivalent norms which are uniformly differentiable in every di-

rection.
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Proposition 4.1 [10]. Let X be a Banach space with an uncondition-
al basis {u,}yr. Then X has an equivalent norm, uniformly differentiable
in every direction, if and only if the following condition holds:

for any €>0 there exists a partition {T'®}~ | of the set
U such that for every choice of different elements {y;}, ,—T'",

Y u, <el
j=1 !
In the present paper we generalize the above result for Banach lattices.
Theorem 4.2. Let X be an order continuous Banach lattice with a
generalized weak unit {u,}r. Then X admits an equivalent norm, uniformly
differentiable in every direction, if and only if X satisfies the condition :
for any €>0 there exists a partition {U{"\= , of the set T

such that for every choice of different elements {y;};_ =T,

(**) I ouy | <el

J=1

Proof. Since u,|A|upg =0, y=p and X is a lattice, then {u,},r is an
unconditional basis of [{«,},«r]=X. Hence, the “only if” part is an immediate
consequence of Proposition 4.1.

The «if” part. Without loss of generality we may assume that ||u,| =1,
v€I. Indeed, let I',={yel; (u, |=m~'}, m=1, 2, ...

Choose an £€>0. By (=), I',,= U7 [, so that for every choice of dif-
ferent elements {y;}¥ =T, | .‘.‘.j____lu.,l_; < f" k. Hence, |Z% ;1u,i‘”—lu,ii]<ek.
Moreover, F'= U7, T'9,. Therefore, {u,/| uy||}yr satisfies (xx). Consequently,
the family {e,},r satisfies (=), where e,=|u,|//|u,].

Since {e,}«r is also a generalized weak unit of X and X is order conti-
nuous, then (see e. g. [8], p. 9) X can be decomposed into a direct sum of a
family of mutually disjoint ideals
(13) X=X @Xv» X7:P¢YX' vel

ver
and e, is a weak unit of .X,.

Let >0 and {["®}>  be a partition of I' according to (++). We shall

show that

(14) max card({yel®; | x* (e,)>e | x*|})<i
x*X®*
Suppose the contrary, i. ¢. .there exist x* € X* and {y}_, =T, v,y Jj*=k
so that | x* (eY/)>r. x* . j 1,2 ..., Then,
gl x* | < X*|( X e)~|x*| || = e |
J=1 ! S

whence | X e, >/, which is a contradiction. Consequently (14) holds.
Since for cach y¢TI, X, is an order continuous Banach lattice with a
weak unit e,, then (cf.e.g. [8] p. 25) there exists a probability space (S,
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I, uy), a Koéthe function space X, on (S, ¥,u,) and an order isometry
T,:X,— X, Moreover, X, can be identified with the Kothe function space
on (S, X, u,) consisting of all p,-measurable functions g for which

I&8llxe=sup{ J fedu, [Ifllx,=1}<-o

In the sequel, we shall briefly write (S, X, p).
For each y¢TI, S, can be represented as follows

(15) S=( U AmuQy,

with A, m=1, 2,... atoms and Q, free of atoms.
Denote f,=T,e,, y¢€I. Since e, is a weak unit of X, and 7, is an order
isometry, then f,(s)>0 a.e. in S,. Put

1 1 .
Qr={seQ,; - -~fAN<_y L,om=1, 2, ...
Consequently,
(16) Q- U Qn yel.
m=1
Let x*x¢ X* Put g,:T_:A'(x_;). y€T, where x) is the restriction of x* to
X,. Define for £¢]0, 1]
gre)= sup ([ |g dn).

Bcam. w(B)t
,
. -1, . ~1
Since 77  is an order isometry, then 77 ( x)))=g,. Hence

- . i . 1
gr)= [ |gyldn -m | - igldu
nl" ()”l
Y Y

m [ f, g dn-m x* (e,)
(l:"
I e.
(17) gm(ly m x*|(e)). yer.
Define operators V,, : X* —/.(I), m=1, 2,... by the formula
1
Vax# () ([ &0t YT

It is clear that V,, are sublinear and positive-homogeneous. By (17), we obtain
V,,,x‘(y)»_.m-‘g';'(l) S x* (e,) | x*|l, yeI, i.e. V, are bounded.
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Next, for each y¢I', m=1, 2,... we have the inequality
(18) Xt (T (frtam)=<| X* (e).

Thus, if we define oporators W, : X* /[ (I"), m=1, 2, ... by the formula
Wopx*(y) =1 x* (TN (fyxam)) 7YET,
Y

then W, x*(y)=| x*|, i.e. W, are bounded. Moreover, W, are sublinear and
positive-homogeneous.

We introduce in the dual space X* an equivalent lattice norm by the
formula

Latl={ ] xtpe S 2mi DYV, %)+ DY WX,

m.u
myi,R=

where V;’ff-:P,-(il,k)V,., W =PramWa m, i, k=1, 2, ...
i

In the sequel we shall use the following assertion:

Lemma 43 [6). Let Y be an order continuous Kothe function space on
a probability space (S, I, p), free of atoms,and Y* be its dual (which is
also a Kothe function space). If we define in Y* an equivalent norm

l~
Hglh=(lgl*+ af 2di)' 2, geY*,

then ||| .||, is w*-uniformly convex and w*-lower semi-continuous.
hus, we obtain that the norm ||.| in X* is w*-lower semi-continuous,
i. e. it is induced by an equivalent lattice norm [||.|| in X
[lxll= sup {{ x*(x) |5 lllx*lll=1}, xeX.

We shall show that the norm |||.|| in X is uniformly differentiable in
every direction using a similar argument to that in [10]. Suppose the contrary.
Then there exist x, VvéX and numbers 1, -0, a>0 so that |x,ll|=1,
llyll=1 and

(19) X+ Tyl + | x,— T,y [[|—2>5a | 1, |.

Since X is order continuous, then by (13), (15) and (16), there exists an
element z¢.X such that

(120) ii'y—z|| —=a
and
(2]) Card ({(Y' m); Ty(Z)X(A.U“.)#O})<m'

Approximating each x, in a similar way, we may choose x;, y, ¢ X* with
the following properties:
(22) ey fl=1 iy llls=ts

(23) | Xa+ To2 lll = x3( X, +T02)+a |1, .,

9 Cn. Cepanxa, xn. 2



130 D. N. KUTZAROVA, S. L. TROYANSKI

H; Xp—T,° ;‘ \;y;.(xn—tnz)—f'—a T s
(24) card ({y; x, =0} Ufly; v, ,F0H< =,

where x; . v, are the restrictions of X!, y. to X,. It is easy to see that by

(19), (20), (22) and (23) we get ’
| xp+ 5l =2+t [x(2)—y () |=a 1,

The last inequality and (22) imply

(25) x(2)—yuz)|=a, n=1,2 ...
and
(26) U+ e |—2.

It follows from (24) that Vx5, V,.v.. Wpx. W,y ec(), m, n=1,2, ...
Moreover, by (14), (17) and (18), we obtain that V, and W, m=1, 2, ..
satisfy the assumptions of Proposition 3.2. Consequently, (22) and (26) give

(27) }."}l (VX (¥) = V¥ (xN=0, vel, m=1 2 ...

and

(28) lim (Wx 3 (¥)—Wayi¥) -0, vel. m=1, 2,...

Since ||| (x.+y)2||=" yilll/3+(2/3) ||| Bx,+y)4 |l we conclude from (22)
and (26) that

(29) I (3x,+ v, )4 1.

Thus, by (22), (26) and (29), applying Proposition 3.2 to the sequences
{(x,+y52}= | and {x.}z , we obtain

n=1
4 I .
(30) lim (V,(—5— YY)~ Vaux (¥)=0. yel, m=1 2 ...
and
(31) lim (Wo( 07" X~ Woxim) =0, yel. m=1, 2....

n-seo

The definition of W, (28) and (31) give
im (x,— Y XT, foxm)=0, vel, m=1,2,...
n-—soo Y

The last equality implies

“nyy

(32) lim 70 (<, v XTA2) xam) =00 VET, m=1,2,. ..
Y

n-yoo
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Consider the space 7(;" —{fe X,; supp f=Q™} and its dual space ;\’;"‘

u{geX’;; supp g=Q7}. Since /\7';' is order continuous, by (27), (30) and
Lemma 4.3, we obtain

(33) lim 7 (x), Yo NT2) - %qm)=0, YET, m=1,2...
Y

n—oo

From (21), (32) and (33) we deduce that x)(z)—y)(2)—~0, which contra-
dicts (25). This concludes the proof of Theorem 4.2.

We shall apply Theorem 4.2 to the symmetric Kothe function spaces.

Theorem 4.4. Let X be a symmetric Kothe function space. Then the
space X admits an equivalent norm, uniformly differentiable in every di-
rection, if and only if X does not contain any subspace isomorphic to
[\(T') for uncountable set T.

Lemma 4.5. Let X be a Kothe function space. If there exists an ele-
ment x¢ X such that the measure on supp x is not o-finite, then X contains
a subspace isomorphic to l... Moreover, the unit vectors of l.. correspond,
under this isomorphism, to mutually disjoint elements of X.

Proof. Let x¢ X satisfy the assumptions of Lemma 4.5. It is no loss of
generality to assume that x>=0. Then there exists an n>0 such that the
measure on the set B={x=n} is not o-finite. Since X is a Kothe function
space, the inequality nxz=x implies xz€ X. Since the measure on B is not
o-finite, we may construct by transfinite induction a family {B,},r, card (")
=WN,, of mutually disjoint measurable sets with O<p(B,)<co, B,=B, yv¢r.
In particular, we may choose a sequence of different indices {y,}; =T so

that 0<c,=|| sy, |, i=1, 2,... Moreover, || x,,nl;':_\:ﬂ 1gll<eoo, i=1, 2,...Since

B, NBy,=@, i+j and X is a Kothe function space, it follows from the above
i i
inequalities that for any bounded sequence {5}, of reals,

cysup | b < ||

itag

bixs, |=!xsll sup b,

which completes the proof.

Proposition 4.6. Let X be a symmetric Kothe function space on a
measure space (S, X, p) with non o-finite measure. Then X admits an equi-
valent norm, uniformly differentiable in every direction, if and only if X is
order continuous and satisfies the following condition :

(%) inf {|xg!|//W(B); B¢, t=p(B)< »}=0 for any ¢>0.

Proof. Let X be order continuous. Then, by a theorem of Kakutani (cf.
e.g. (8, p. 9]), the space X can be decomposed into a direct sum

(34) X=X ®Ai,,

v

where for each y¢I, X, is an ideal with a weak unit e, and e, Aez—0, y==p.
Since (. is not order continuous, we get from Lemma 4.5 the measure
on supp x is o-finite for each x¢.X, i e,
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o

suppe, = 1 B, yel with B/NB =@, ixj wBH)<=.

Considering another index set I', with no loss of generality we may assume
that

(35) e, =%, O<WB,)<=, u(B,NBg)=0 v5p.

The family {e,},r is obviously a generalized weak unit of X. We shall
show that (x++) implies (x+). Put [, ={y€¢l; m ' -p(B)=m}, m=1, 2. .
By (34), I'= 1z T

=17 m*

Let £>0. Fix an integer m and denote 6-=¢/(2mC) where C is the sym-
metric constant of X. By (#+x), there exists a measurable set A such that

36) m=uA)< =<, ||x14ll<du(A).

Put i =[p(A)'m]. Thus, (36) implies i>0. Let {v_ =T p ¥;¥+Yp j+k
and denote B= |) j’:lBY/' Since w(B)=im=pu(A), then || x5 [|=C| x4 !. Hence, (36)
gives

i

) X”",’<C 2_;? n(A)-ei.

j=1

Renumbering [',, we thus obtain the condition (**). Therefore, it follows
from Theorem 4.2 that X has an equivalent lattice norm which is uniformly
differentiable in every direction.

The <“only if” part. Since /(. has no equivalent Gateaux differentiable
norm (cf. [3]), then by Lemma 4.5 the measure on supp x is o-finite for each
xeX. Hence (cf.e. g. (8, p. 29]), X" is c-order complete. Thus, since X does
not contain a subspace isomorphic to /., it followsfrom a theorem of Loza-
novskii (see e. g. [8, p.7]) that X is order continuous. Consequently, (34) and
(35) hold.

Since p is not o-finite, then [ is uncountable. Hence, there exists a con-
stant ¢,>0 and a subset I'yc-I' with I'j uncountable so that

(37) ley|| ey, WBy)-— ¢, veT,.
Fix an arbitrary £>0. Let £¢>0. Put
38) 6 min (ecy, ci/t).

Then, by Theorem 4.2, there exists a corresponding partition {[(®}= = of the
set I'. Since I'; is uncountable, we may find an integer 4 such that card (I'(
Nk Let {y s TP 0T, v+ v j+ ¢q. Combining this with (37), we have

]
(39) o=l X e, ll<ks.
Je=1

From (38) and (39) follows immediately
(40) t<c k.
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Denote B= 1] ;=1B,]_. By (37) and (40). we obtain
(41) WB)=c,k>t.
Moreover, (38), (39) and (41) give

&
|5l =1 T e, <snck=cu(B).
J

Then, (41) and the above inequality imply that
inf{|xg/n(B); t=pB)<o}=0,

which concludes the proof.

Lemma 4.7 [6]. Let X be a Kothe function space on a o-finite mea-
sure space. Then X admits an equivalent lattice norm, uniformly differen-
tiable in every direction, if and only if X contains no subspace, isomorphic
to l...

Lemma 4.8 (cf.e. g [7, p. 120]). Let {x,}> , be a symmetric basis of a
Banach space X such that limsup,| x;+x3+ ... +x,|//n>0. Then {x,}=
is equivalent to the natural basis of [,.

49. Proof of Theorem 4.4. The “only if” part is an immediate con-
sequence of the fact that /(I') with [’ uncountable has no equivalent Gateaux
differentiable norm (see [3]).

The “if” part. Since /. contains a subspace isomorphic to [(I') with
card (M>N, (cf. e. g. [1, p. 254]), then X contains no subspace isomorphic to
l.. If the measure p is o-finite the assertion thus results in view of Lemma4.7.

Let now the measure be non-o-finite. Since X contains no subspace iso-
morphic to [., then by Lemma 4.5, X is o-order complete and by a theorem
of Lozanovskii (cf.e.g. [8 p. 7]), X is order continuous. Hence, in view of
Proposition 4.6, it remains to show that (=) holds. Suppose the contrary,
i. e. there exist #;, ¢,>0 so that

(42) Lgll=cy(B) for any B¢X with f=uB)< .

Since p is non-o-finite, we may construct by transfinite induction an un-
countable family {B,},r of mutually disjoint measurable subsets with finite
measure so that

(43) inf u(B,)=t, sup | g, | =cy
ver vel

Then, for any finite system {y,} <T, by (42) and (43), we obtain

n
(44) f b XBy ;:' 'L on
=1 i U 8

=]

= CyH( ‘Ul By‘)ZC,tﬂ-

It is easy to verify that {yz }yr is a symmetric basic sequence. Therefore
by (44) and Lemma 4.8, {xp }r is equivalent to the natural basis of the

space [,(T"). The contradiction shows that X admits an equivalent lattice norm
which is uniformly differentiable in every direction.
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