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CHARACTERIZATION OF CONVEX SUBSETS OF THE PLANE
THROUGH THEIR LOCAL APPROXIMATION PROPERTIES

MARIANA D. NEDELCHEVA

The smooth planar convex compacta are characterized (up to translation) by means of
their local approximation properties. The same is done for polygons.

1. Let R* be the two-dimensional plane with the Euclidean norm - |
Denote by CONV the set of all convex compact subsets of R?:

CONV={ACR?: A is compact and convex}.

The Hausdorff distance # between A, and A, in CONV is defined by

h(A, A)=inf{t=0: A, cA,+tB, A;=A,+tB},

where B—-{P¢R?*: |Pl--1} is the unit circle.

We denote the usual inner product of two points Py, Py¢R* by (P,, Py)
The support function S, corresponding to A¢CONV is given by S,(P)

max {(P, X): X€A}.

This function, defined for each point P in R?2, is continuous, convex and
positively homogeneous. Therefore it is completely determined by its values
on the set S={0¢R?: 6 =1},

It is well-known that the mapping (A — S4(-)) from CONV into the
space C(S) of all continuous functions in S, is one to one and that

h(Ay, Ag)=max { S4(0)—Sa(0)/: 8¢S} = |Ss,—Sall-

Let us accept the counterclockwise direction on § as positive. For 0y, 8,¢S
we denote by [0,, 6,] the arc on § with end points 8, and 6, which connects
6, and 0, “in the counterclockwise direction”. The meaning of (0,, 8,), (6, 6,], (8,, 8,)
is clear now.

The following operation, defined in [3], plays an important role in our
considerations. To each pair 6", 0" ¢S, 0<(0’,0")<n and A¢ CONV we assign
a point M=M(A; 6’,0”), a number d=d(A: 0,0"")=>0 and a vector
0* = 0%A; 0, 07)¢(0’,8”) so that

S4(07) (0", M)=5,(0"")—(8", M)=(0% M)—S,(0%)=d,
max{ Sy(0)—O, M)|: 0¢ [0, 0”]}=d.

The geometric interpretation of the function d(A; 6’,0") is shown in
Fig. 1. One important extremal property of this construction is revealed in
[3), where P. Kenderov had proved that in the arc [0, 0”] the function (0, M)
approximates S,(0) better than any other function of the type (0, P).
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166 M. D. NEDELCHEVA

In this paper we prove that the function d(A; 0’,0”) determines the
set A up to translation (in the case when A is “smooth” set or a polygon).
We need the local asymptotic analysis developed in [5], whichis connected

\L/ ot

Fig. 1

with the approximation of the set A by a sequence {A,}= , of “best approxi-
mating n-gons”, P. Kenderov [4].

Asymptotic estimates of this approximation are obtained by Toth [9],
V.Popov [7), McClure and Vitale [5]. It is an open problem to find
necessary and sufficient conditions for a given n-gon to be a bestapproximat-
ing for some A¢CONV. N. Zhivkov in [10] has announced a stronger
necessary condition for the best approximating n-gons. Unknown is also the
answer of the following question of Bl. Sendov and V. Popov: Is it true
that among all the elements of CONV with perimeter 1, the equilateral
(n+1)-gon (with the same perimeter) is the worst one to be approximated
by n-gons? In support of the positive answer is the result of R. Ivanov [2].

2. From now on we will identify S with the set [0, 2r].

Theorem. Let A, and A, be sets of CONV with interior points. Let
the support functions S be twice continuously differentiable and r >0(i=1,2),

where ra, ,S,.l+—$‘4’, is the familiar radius of curvature function. Let d(A,;
0,0")=d(Ay; 0°,07) for any pair 0’,0"7 ¢S, 0<(0",0")<n. Then A, is 0b-
tained from A, by a translation.

The proof of this Theorem is based on the following Lemmas:

Lemma 1. Let A¢ CONV have interior points. Let S, be twice conti-
nuously differentiable and r,0) -3, for 0¢[0,2n). For any &--8, a convex
subset As exists satisfying As+Bs—~A (Bs is a circle with a centre in the
origin and radius o).

Proof. Consider the set As={x€¢A. p(x, R*\A)=5}, where p is the
distance with respect to the Euclidean norm, p(x, R\ A) —inf, gr ap(x, ).
At first we show that A; is convex.

Let x¢As veAs and p(x, RN A)=06, =6, p(y, R* A)-8;=45. That im-
plies x ' By~ A and y+Bs,~A. From convexity of A we obtain conv{x+ Bj,
v+ Bsjo A,
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Let z==(1—t)x+ty for 0<t<1 and r=38,(1—£)+34f=08(1 —£)+06t=35 (se
Fig. 2). Explicitly z+B,cconv {x+ Bs,, +1§ —A. Tshe: 2 A)> :
2€ As, from which it follows thai As igl cz‘)’nvexs.’} AP RENANE0 o8

A

Fig. 3

Now we show that As+ Bs=A.
Let xEAs+Bs=yL(_JA (y+Bs). This implies x¢y,+Bs for some y,¢ As.

S
But p( v, RN A)=d vields x¢y,+ Bs—A or
(21) As+Bs= A.

We have to prove the opposite relation.

Let x¢I', (I, be the boundary of A). Let ! bethe support line of A that
passes through the point x and y+ Bs osculates [ in the point x by the side of
I, (Fig. 3). From the corollary of Blaschke’s theorem [1, p. 140] we obtain
y+ Bs=A. This implies p(y, R\ A)=8or y¢As. Then xcy+Bs=As+ Bs,
from which I, As+ B

From the theorem of Krein-Milman 8]

(22) Ac As+ Bs.
Comparing (21) and (22) we obtain A= As+ Bs.
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Lemma 2. Let A¢ CONV has interior points. Let S, be twice conti-
nuously differentiable and ry,>0 for 0¢[0,2r]. Then
-0 ’ _VA(G') . k2
d(A; 0,6 +k)————16+k2 + o(k?)

for a fixed 0" and sufficiently small k.

Fig. 4

Proof. From the assumption r40)>0 on [0, 2] and the continuity of 7,
it follows that 3,>0 exists that r,(0) =5, Let 0<d=3, This assumption and
the Lemma above vield A - A,+ B, which implies

(23) Sa0)+d -S,0) and  ra(0)=ry(0)—d

for any 0¢[0, 2n).
Let us fix now 0’¢[0,2n). Unique vectors 8’,0% and a point M exist,
for which

SA(0)— (M, 07) =S ,(0")—(M, 0"y =(M, 8*)— 5 ,(0%) =d,
max {|S,(0)—(0, M)|: 0¢[07.0")}=d

(see Fig. 4). This follows from the results of P. Kenderov [3]

It is easy to show that 0<0"” 0" <n.

From (23) and (24) it follows A(M, Ay)=(M, 6%)—S, (0%)= (M, %) -5 (0*)
+d =2d. That is

(249

(25) (M, Ag)=2d(A; 0, 07).
In (5] it is obtained that
(26) KM, Ag) & ra 03+ o(k),

where £ 0 0’<n. A powerful tool in the obtaining of this result is Po-
lya's mean value theorem [6].
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From (25) and (26) it follows 2d(A: 0, 0)= L ra(6')k2+0(k?), where
k—0"—-0'<n Having in mind (23) this becomes

2d(A; 0, 0") =1, (9’).@-5‘.‘1%'9")/324_0(;{2).
Then
o 0). &2
d(A; 0,0 ):%_;_o(ka).

Proof of the theorem. From the hypothesis of the theorem and the re-
sult of Lemma 2, for any 0¢[0, 2n) and sufficiently small & we have

ra,(0). &2 . ra,(0). k2
(A 0,0+ k) =T+ 0,(R2), d(Ay; 0, 0+k) =t +0a(?).
Thus
ra,(0). &2 ra,0). k2
1‘6 TR +04(k?) = ‘*A]’G TR + 04(%2).

This is equivalent to

k2
ra(0)+ 25 = ra(0) + 2%
We obtain the limit by £]0:
(27) ra(0)=ra(0) for any 0¢[0, 2x].

Equality (27) implies that the function @=38,—S., satisfies the differen-
tial equation ¢+ —~0. Then S4,(0)=C, cos 0+ C, sin 0+ S.(0).

This means A, may be obtained from A, by a translation, determined by
a vector with coordinates C, and C,.

3. Let A be a polygon with vertexes Py, P, ..., P, and side-directions
(directions of the outward normals to the sides) 6,<0,<---<0,<6,+2x.

Having in mind only the definition of the function d(A; 0’,0’"), it is easy
to show that

i) d(A; 0,0,51)=0 for 0¢[0,, 0,44,
“) d(A ' 9\'—l- 0) = for 9( [ev—h evl’
iii) dA; o, 0’)>0 for0’¢[0v—y, 6,) and 0" € (B, 0,41).

Theorem. Let A, and Ay¢ CONV be polygons. Let d(A,; 0',0")=d(A,;
0',0") for any pair 8',07¢S, 0<(0",0")<n. Then A, is obtained from Al
by a translation.

Proof. From the properties stated above i), ii), iii) and the equation
d(A,; 0", 0")=d(A, 0’,8"), it follows that the corresponding side-directions
of the polygons A, and A, are equal. In order to obtain A, from A, by a
translation, it is sufficient to show that the lengths of the corresponding sides
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are equal too. That follows immediately from the congruence of the triangles
(see Fig. 5)

Fig. 5

AP'P\M! ~APDM2, AP P, M' =~ APPP: M.

v41 v+l

Then PLPL,—-PIP!.,. The proof is completed.
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