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A REGULARIZED CONDITIONAL GRADIENT METHOD APPLIED
TO SINGULARLY PERTURBED OPTIMAL CONTROL SYSTEMS

M. G. DMITRIEV*, ASEN L. DONTCHEV, VLADIMIR M. VELIOV

We propose a modification of the conditional gradient method which provides geometric
convergence for strongly convex functionals. The influence of the computational errors on the
convergence rate is estimated. As an application we consider an optimal control problem for a
singularly perturbed linear system for the solving of which we use an iterative procedure separat-
ing the slow and the fast subsystems.

1. Levitin and Poljak [1] showed that the standard conditional gradi-
ent method converges as | & and that this estimation is exact. Here we pro-
pose a modification of this method related to Tichonov’s regularization tech-
nique, which provides convergence of order g%, q¢€(0,1), for strongly convex
functionals. This modification is related to the method used by Barnes [2]
who considered, however, linear-quadratic optimal control problems only. Further-
more, we analyse the influence of the computational errors, accompanying the
method, on the convergence rate. As an applcation we consider an optimal
control problem for a lincar system withslow and fast subsystems containing
small parameter in the derivative. Such systems are stiff for computations,
therefore we use an iterative procedure, originally proposed by Dmitriev (3]
for approximate solving of the state and the adjoint equations. We show that the
global error can be estimated by the sum of two independent terms: the error
of the method (geomctrically decreasing but may depend on the singular para-
meter) and error of the iterative procedure. This estimate generalizes the corres-
ponding result of Dmitriev [3] who assumed that the terminal part of the
functional depends on the slow states only. Our approach turns out to be
quite general and can be used in the analysis of other methods with various
computational inaccuracies.

2. Let B, and B, be Banach spaces with norms ||. |, B, be reflexive and
U/ be a closed, bounded and convex subset of B,. Let Z2:U +B, be a linear
and bounded operator, b¢B, be given and /:U/<B, -R' be a functional,
which satisfies the following conditions: J/ is Freshet differentiable and the
derivatives /. and J, are Lipschitz continuous on (20/ + b) </ with constants
L, and [, There exists a constant p,>0 such that for every (x,. ) and
(xq. y) from (20U +b)<U the following relation holds

J(xy ) J(xg g) (S (X tg), X\ X))+ (S, (Xouthg), tty ) b |ty lag|?

where (.,.) denotes the duality. The last supposition is equivalent to the con-
vexity of / and the strong convexity with respect to # uniformly in v,
For the minimum problem

(1 J(x,u) »min, x Zuvb uelU
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we consider the following minimization procedure: Let the constants &
be fixed and pé€ (0, p,). The iteration is defined as s 0and A

uk+1:”k+0k(zk— ), | Xpyy— Zty,—b | <3,
where a, is obtained from
ay - argmin {J (X, + @ (X,—X,), U+ a(uy—u,)), a0, 1]},
and (x,, u,) satisfies
'-Ik('v—k'l.'-k) './k(xA,. iik):f;A, ;,—Iﬂk—biigﬁ,

where Ji (X, @) =(J, (Xp We). X —Xp) (U0 (X ), U—1y) +R 1| u—uty |2, and (i 1)

solves the “small problem”
(2) Je(x. @) —min, x=Zu+b, ucU.

Note that the method differs from the standard conditional gradi
in the quadratic term included in the functional of the small pgoglel:‘t(;;.eth()d

Denote by (x, ) the solution of (1) (which exists) and let J=J(x, u y
troduce the constants ) et J=J(x,u). In

ap - pn (L | Z|+L)A+ [ 2]). g=1—ay, D,=sup|lu | uecU,
D.=sup Zu+bl,ucU.

Observe that L (L, Z|+L,)(1+| Z||) estimates the Lipschitz
of the gradient of o(u)=J(Z,+0b, u), hence a,¢(0,1) and q((g. 1).lt o
Remark. In the sequel we assume that u,,,#+u,. In case u,,,=u, the
algorithm terminates and u, is the exact solution. b
Theorem 1. The following estimation holds:

(3)  J(xw ) I=q* (U (Xen 1) =)+ A+ agd (L (254 2D, + D)+ L,D,).
Proof. We have
4) J—J(Xn 1) -(Je (Xps W), ;-.\',)+(J.; (X4 1), E—-u,,H—uo }i;—-u,|’
= Je (X, 0) =Ty (X ).
Furthermore, for some a¢ (0, 1)
J(Xps1slasr) ToJ(xp+a(xp— Xp) tp+a(uy—uy)—J
S tg)— I+ 0 (X Up), X X+ 0y (X 1), Uy—1,)
- "‘,;" (| x0 - Xa !4 @a—tp ]) || Xa— X fi'i;'(nk. Xy ||+ ay—uy ) || @y —u, |
S (X an)— T+ 0ty (xXp ) —ap || @, 1, |[*+ aA

L+ L XXy ] =]
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Using (4) and the inequality
Xo—Xp | 2| Xpg—Z Up—b ||+ | Z Up—tt) | +|| ZUp—by— X,
in the above estimate, we come to (3).

The obtained estimation (3) means that the error at each step is not
accumulated by the iterations and the global error is a sum of the method’s
error and the inaccuracy in solving the small problem.

3. We are interested in linear differential systems containing a positive
parameter in the derivative, namely

(5a) v=At)y+ Ayt)z+0,(t, ), ¥(0)=y° yER",

(5b) ez —eA(t) y+ At) 2+ @yt €), 2(0) =2° 2 € R™, t€ 0, 1],

where the eigenvalues of the matrix A,(f) have strictly negative real parts for
all 7¢[0, 1] and the parameter ¢ is small relative to the other parameters of
the system. To be specific, assume that the matrices A;(.) and the functions
¢, (.) are continuous and the norms | 4, and || AyA;'A,| . are near 1. Then

z mayv be large compared with v and we refer to y and z as the slow and
the fast variables, respectively. Taking € =0 the order of the system reduces,
therefore the perturbation, represented by & is called singular.

Observe that the standard form of a singularly perturbed system is

)'=A,(t)y+/42 (t)w+ ‘P| (t' 8)' 8'&’ - A3 (t)y+A4 (t)u’+‘p2 (t‘ 8),

but, in case of differentiability of A, '(£)A;(¢), it can be transformed into (5ab)
by the substitution z -w+ A 1A, .
Dmitriev [3] proposed the following iterative procedure for solving (5ab):

Cz.k =eA; () Vet A (D) 2,+ 02 (8, €), 2, (0)=2°

Vei1 = A (O Ve + Ag (£) 2, + 0, (2, ), Vit (0) = ¥°.
It was proved in [3] that if (y, 2) is the solution of (5ab) then there exist
constants ¢, ¢, such that | v,-y |+ 2,—2l[,=c, (ce)*.
Using a direct proof, which turns out to be very simple, we obtain here
a refinement of this result. Let Z, (£ t) be the fundamental matrix solution of
the equation (5b). It is known that there exist constants o, 6>0 such that

(6) Ze: (L, r)lw,_\;c“exp(-,ot_“_’,).

€
Analogously, let Y (£ t) be the fundamental matrix solution of (5a), and
let the constants a,, a satisfy | Y(£, 1) ||=a, exp (a(f- 1)).
lLemma 1. Denote ¢ %’» ev || AQA Ayl and :" | As ..
Then
Uy 9] o= (P + O ), (| 2y—2l.56, (cOF+ + O (s449),
Proof. The first estimate follows from (6) and from the equality
t T

AYyy, (8) d’ Y, t)A,(r)JfZ,(t. $)A3 ($)AY, (5) dsdr,

where Ay, vy, . The second cstimate uses the Cauchy formula for (5b).
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Observe that the convergence rate of this procedure does not depend on
the functions @, and on the initial conditions.
4. Consider the following optimal control problem

) J(x( ) u()=g(x( l))+l)}'f(x(t), u(t), t)ydt — min

x=(¥,2)¢eR"}XR™, ueR,
(8a) Y= A (O y+ A2+ B, (B a, y(0)=y°,
(8b) gz =eA; (1) y+ A, () 2+ By (H)u, 2(0)=2°
u(t)eU for a.e t¢[0, 1], u(.)eLP]0, 1]

where the matrices A, (f) are the same as in (5ab), the matrices B;(f) are conti-
nuous in [0, 1], the set U= R" is closed, convex and bounded. We assume that
the functions g and f(.,{) are both convex and differentiable and the deriva-
tives g, f., f, are Lipschitz continuous (with respect to x and z uniformly
int); f(x, u, t) is strongly convex with respect to # with a constant p, uni-
formly in x, ¢; f, f, and f_ are continuous.

The above problem can be considered in the framework of the abstract
setting (1), where one may take B,=L{"*™ [0, 1]<XR"+", B,=L{[0,1]; the
operator 2 will be determined by the differential equation (8ab) and will de-
pend on the singular parameter, and all the conditions for (1) will hold. It turns
out that the conditional gradient method descibed in the first part of this
work is very convenient to be applied to (7) since the small problem will be
an optimal control problem which is linear with respect to the state, hence,
it can be solved “at once” by Pontryagin’s maximum principle. One has
to solve the adjoint equation

(9a) {=—Al (£) L— AT (£) 0+ fy (x4 (), 4y (£). F),

(9b) en=— A ()L~ AT(E) n+f 2 (x, (), up(2), 8),
L= g, (xp (D). n(1)= —g (x,(1))e

Then u,(t) will be determined by
(10) (fL (e (D) ay (). O+ (OB () a+p | a—uy (£) P—min, ueU,

where £€[0, 1], w=(& ). B=(B,, By) and n¢€ (0, u,). The control in the next
step will be

sy (8) =y (£) + 0y Uy (£) - 1, (2)),

where a, -arg min {J(xp (L) Ha ()= x,(2)) iy( ) +a(uy (. )—uy(.))), agl0, 1]}

This is the case when the computations are exact, i. e. 8=A=0, in the
general setting. Then, according to Theorem 1, the method converges as geo-
metric progression. The ratio of this progression, however, may depend on
the singular perturbation parameter. In order to find this dependence one
should estimatc the norm of the operator 2.
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In the sequel we omit the somewhat lengthy proofs which are entirely
based on the mathematical technique presented in [4, Chapter 3|.
Lemma 2. Consider the operator

Zou()ELY (0, 1] = (y (1), 2(1), y(.) 2 (.)€ R <R™ < L0, 1] L{™ [0, 1],

where (y(.), z(.)) are determined by (8ab) with zero initial conditions, and
let | Z.| be the usual operator norm. There exist constants cy and cy
such that

(1) I e T
The following example shows that ¢,+0, in gencral
g2 —z+u.(t), z(0)=0,
0, 1€[0, 1—¢],
1, te(l—g, 1),

Then | 2, = z.(V) |/ lus(.) |1, ~ €05
The estimate (11) applied to (3) gives us the following convergence of
the method

ug (t)= {

T ()t (N T=(1 e @) (J(xo () ttg(.))—T)

for sufficiently small & If the function g is independent of z then one can
improve this estimate by changing the spaces and redefining the operator Z..
Lemma 3. Consider the operator

Zou()ELY [0.1] ~(y( )z (. )EC™ [0, 1] L™ [0, 1),

where (y(.),2(.)) are determined by (8ab) with zero initial conditions. There
exists a constant c, such that |\ Z.!|<<c;.

If ¢ depends on z linearly, then the Lipschitz constant of g’ is zero, and
the number «, in (3) can be estimated from below by const. g%

Combining the above results we obtain

Theorem 1. The regularized conditional gradient method converges in
the following way

(=) (J(xo (ot ) —T)  when g,==0;
Jep ()t N —T < (1= e (S (o () tto )~ when g is linear inz;
(1 —cye)* (S (xo(. )t .))—J) otherwise.

Let us consider now a more general situation when the subprocedures in
the method are not exact. To be concrete let us assume that the state and
the adjoint equations are solved approximately by the procedure presented
in part 3 of this paper.

Suppose we are on the k-th step having the control «, and the state x,.
Then we have to solve the adjoint equation (9ab) for x, and u,. Since the
convergence of the iterative procedure is independent of the free terms and

of the initial conditions after / steps of the procedure we get y, which, accor-,
ding to Lemma 1, differs from the exact solution yx as ||y, —w, |, e 08 + O(e'*)
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where the constant ¢,, is independent of 2. The error of the adjoint variable
represents a perturbation of the small problem (10), which is strongly convex.
Applying Proposition 1.3 from [4] to (10) we get that the approximate solu-

tion u, of the small problem fulfils ||, —u,|l.<c,, &+ O(e'*!) (note that u,(.)
and u,(.) are continuous functions). Furthermore, if x, approximates the opti-

mal trajectory by the iterative procedure, then | x,— x,| . =cp€+O(e'*"). The
last two inequalities imply

e (Xn (s g (N =T (X0 () tp (D))= €138+ O(e+) = A.

It-remains to take d--c,4& and to apply the general estimate (3). We have
already estimated @, and ¢ in lemmas 1,2 and Theorem 1. The constant D,
does not depend on & since the solution of (8ab) is bounded uniformly in ¢
and & for uniformly bounded controls, see the proof of Lemma 3.1 in [4].
Finally, as an extension of Theorem 1 we get

Theorem 2. Suppose that the regularized conditional gradient method
together with the iterative procedure for solving differential equations (with
i steps) are applied to the problem (7). The following estimation holds for
small €:

J(xp ()1 (- N—J=(1—c;—cs e —cye)f (J(xo(- ) 15 (.))—T)+ 15 €.
If g does not depend on the fast states z, then c;>0; if g depends linearly
on z, then cs>0.

5. As a general conclusion we obtain that the proposed regularized gra-
dient method converges geometrically, but, when applied to optimal control
problems, the presence of singular perturbations (ill-posedness of the state
matrix) may lead to slowing down the convergence rate. However, if the fast
states are not included in the terminal part of the functional, the convergence
is uniform in singular perturbations. The iterative procedure we use to solve
the state and the adjoint equations does not affect the convergence, moreover,
the computational error is not accumulated along the iterations. The resulting
error can be estimated by the sum of the error of the method and the error
of the iterative procedure. This means practically that if we are not near the
minimum we do not need to solve precisely the differential equations.
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