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STABLE LIMITS FOR SUMS OF M-DEPENDENT
RANDOM VARIABLES

L. HEINRICH

The paper deals with the convergence of sums of stationary connected m-dependent ran-
dom variables to a given stable limit distribution function. Especially the normal approxima-
tion of sums of m-dependent random variables with not necessary finite variances is consider-
ed. Furthermore, some bounds for the accuracy of the stable approximation are derived. The
investigations are based on an estimate of the logarithm of the characteristic function of a
sum of m-dependent random variables, which is proved in an earlier paper of the author. Two
examples which are of interest in themselves illustrate the obtained general results.

1. Introduction. We consider a sequence (X,)e—:. 2... of m-dependent

random variables (rv’s) defined on a probability space (Q, 9, P). We recall

that a sequence (X,)k—1.2 ... of rv’s is called m-dependent if for 1=s<t=u,
t—s>m, the random vectors (Xy,..., X;) and (X, ..., X,) are independent.
We put S, =X, + ... + X, Fx(x)=P(X<x), and fy(f)=Ee*X, where X stands

for an arbitrary ro on (£, 9, P). Further, Gug(x, ¢) denotes the stable distri-
bution function (df) whose characteristic function (¢f) gup(?, ¢)= [ _ e#* dGap(x, )

has the logarithm
In gap(t, ¢)=—c |t %1 —ip sgnto(t, a)),

where 0<a<2, [B |1, ¢>0 and o(f, a)=—;‘2—ln tl, if a=1, = tan(na/2),

else.

We briefly write ®(x)=Gy(x, 1/2).

The main purpose of the present paper is to find appropriate conditions
which ensure that discrepancy

De® (x, ¢)=Fz (x)—Gap(x, ¢) with Z,=(S,=4,)/B,

uniformly tends to zero, where the centering and norming sequences A, and
B, are suitably chosen. Furthermore, some estimates of the uniform error
sup | D@® (x, ¢)| are given. At the end of the paper some instructive examples

illustrate the results in Section 2 and 4. The approximation of a given stable
distributed rv by asuitably standardized sum of independent identically distri-
buted (i. i. d.) rv's a is a well-studied problem in probability theory (see e. g.
2; 7; 8; 9]). The corresponding question for sums of weakly dependent rv’s
is more complicated. In |7] it is shown that in the case of a stationary a-mix-
ing sequence (in the sense of M. Rosenblatt) the possible limit distributions
of Z, are stable and, further, if the limit df has exponent «, 0<a-=<2, then
B, is equal to n'“h(n), where h(x) is a §lowl)' varying function as x--+oco, i. e.
h(xv) h(v)—1 as v for every x>0. The convergence of the df of a sum
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180 L. HEINRICH

of @-mixing (in the sense of I. A. Ibragimoyv; in particular m-dependent)
rv's to an infinitely divisible df is treated in [1]. Conditions under which the
df of a sum of @-mixing Markov-dependent rv’s converges to a given infinitely
divisible df were found in [4]. However, it is still an unsolved problem for
stationary m-dependent sequences, to find out which conditions on S,. S,
(and Ss,) guarantee sup, D@(x, ¢)| -0 as n—~ - and enable to estimate
the rate of convergence. Some resultsin this direction are obtained for Markov-
dependent rv’s in [10]. Under special dependence assumptions some stable li-
mit theorems are proved in [3]. Estimates of the concentration function of
m-dependent and Markov-dependent sums, which converge in distribution to a
stable distributed rv, are given in [6]. The fundamental estimate to carry out
the following investigations was derived in [5] by using a product represen-
tation of fsn(t) in some neighbourhood of #--0.

Lemma 1. Let X, X, ... be a sequence of I[-dependent rv's. If

WaXi=x=n £ e Me—1 2--1/36, then

Mnfs ()~ E (fx, (1) — T E@ St D™ —1)
n k=1 k=2

3 E(@M2 —1)e N1 — 1 (" —1| =Cymax |fx () 1| T [fx()—1.
k=3 \~k-n K k=1 k

Here and below C,, C,, ... denote absolute positive constants (not depen-
ding on m and n). Lemma 1 is an immediate consequence of Lemma 3. 3 in
[5). That’s why we omit its proof. Let ¥, Y, ... be a sequence of m-depen-
dent rv’s. Then it is obvious that the rv's X, =VYae it + . +Yoe E=1,
2,..., form a l-dependent sequence. For the sake of convenience we assume
that N n/m is an integer. Then we can reformulate Lemma 1 in the following
way.

Lemma 2. Let Y,, Y, ... be a strictly stationary sequence of m-depen-
dent rv’s. If E|e“% —12-21/36, then
(1.1) Infs (6)—N(fx,(8)—1+ E(e“*—1) (e“X: 1)+ E(e**—1)

< (etXe 1) (eX—1) <Cylfx(t)—1 (1 +N fx(t) 1))
tHere we have only used the estimates

|[Z‘(f"’x."“I)F”x""l)| . ‘E‘I ell‘X. -l ‘.)_‘.2“]1‘.'(') 1

and

“2) ‘b.(eux. ])(‘,n.\', l) (‘.MX. ]) ,([:‘, (.:1.\', | 3).1':.

Because the dependence between Y, Vi ..., and Y, can be very strong we
shall put the conditions on the sum X, =V, + ¥, + ... + ), Inconcrete situa-
tions one has to check the conditions by utilizing the given dependence stuc-
ture between Y, ..., Y,.. Thercfore, with exception of Section 3, we only

consider l-dependent rv’s.

2. Convergence to a stable law with exponent o, 0-“a<2. It is well-
known that the stable df Cig(x, ¢), O<|Bl .1, possesses some extreme proper-
ties, especially in view of the choice of the centering sequence A, Therefore,
to formulate the results of this section we distringuish two cases.
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Theorem 1A. Let X, X,, ... be a strictlji stationary sequence of I-depen-
deni r*n’f, O<a<?2, a=l. B =1 and a—1, B=0, respectively. Suppose tl;zat,
as t - 0,

fx(t) e @ —1=— t °h()(1—iBsgnto(t, @) (1+o0(1))
and
Froex, (£)e 20 —1=— ¢ “hyo(t) (1—iB sgnt o, a)) (1+o(1)),

where a is a constant and the functians h\(t), hy(t) are positive, continuous
and slowly warying (in the sense of Karamata, see e, g. [7])as t — 0. Fur-
ther, assume that

(2.1) limsup 2,(£)/ho(t)=b< 1
r—-u
and put
A,=an, h(t)=h()—i(t) and B ' =inf{t>0: ¢ h(t):L.
n
Then
sup D@ P(x. 1) .0
holds.

Proof of Theorem 1A. Let 7 be an arbitrary positive real number.
Then it suffices to prove

(2:2) lim fz (£)=gs(t, 1) for t|<T.

n—s oo

Put Ay,=(Xe—a)/ B, k=1,...,n It follows from Lemma 2 and (2.2) that,
for all ¢ with [fx (£)—1 L 1/72,

(2.3) Infz () -n(fx,, + x,,(O)—Fx, (5)]
Cs | fx, (O—1]"2(1+n|fx ()—1]).

Since B, — -o relation (2.3) holds for #|=T if n is large enough. Using the
notations and assumptions of Theorem 1A we get

h_li!/B'l) "I“ ;Bn)

‘ ' le (" fla 8 b N
(2.9 nlfx,O—V=Ct 5078, s, 1=
for t/--T and large enough 7.
By virtue of (2.1) we have
, h(vx) mvx) o () hfox) ) hy(v)
| %% —11=0 )@ ey ! Ay — 1 V1= h,:w_) .0

as v 0 for every ¢>0, i. e. A(x) is slowly varying (in the sense of Kara-
mata) as x 0.
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Therefore, our assumptions imply

N fx, 0,8 L, () =1 Gu(6, 1) lim - A(LB,)

=1In gap(t, 1)

for ¢t <T.

Thus, from (2.3) and (2.4) we obtain (2.2) and so Theorem 1A is
completely proved. [ ]

Theorem 1B. Let X,, X, ... be a strictly stationary sequence of
I-dependent ri's. Suppose that there exist sequences A, and B,>0 and real
numbers c¢,, c, with 0<c,<c, such that

fr(t/By) e e a@(t, ©)

and
T x (/B e N P gy (8, ¢y) for  BI=1 and every real .
Then
sup | DGP(x, cy—cp) 0
holds.

To verify Theorem 1B we put again X,, (X,—A,/n)/B, k=1,...,n
and make use of the fact that

fx, (H—1=Infx @) (1 +o(l)) as n —

for ¢/ --T. Then by repeating the steps in the foregoing proof of Theorem
1A we get the assertion of Theorem 1B.

3. Convergence to the normal law. [he normal approximation of sums
of m-dependent rv’s is a fairly well-studied problem if at least the second
moment of the summands exists (see e. g. [5, 7). Here we shall consider
the normal convergence for sums of m-dependent rv's with not necessary fi-
nite variances.

Note that for arbitrary complex numbers 2z, ..., 2z, with |z, 1,
i=1..., m,
m m
Iz, -1 Z(z, 1)=2 X z—1| |z, 1
(=1 =1 l=si</=m
and
m m )
mz,-1)-Z(z -1 r (z—-D(z-Dl .2 X z— 1| —1|zx 1.
e ) | Vol Jum V < Ja hum

By elementary, but rather lengthy computations we get from the last relation
and Holder's inequality that, for a stationary m-dependet sequence V,, Y, ...,

[fx(t) 1 +E@X 1) ("% 1)y—m( fy(t) -1+ ;E/:'(c””" Dy (e 1)
/=

< () (e 12 ("o 1
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E etXi—12=m2E|e"™"—1 3,

and | fy(8)—1|=2m?|f, (1)—1|. From these estimates and Lemma 2 we can

deduce the following
Lemma 3. Let Y,, Y, ... be a strictly stationary sequence o -d -
dent rv's. If |f,(£)—1|=1/72m?, then Y sequence of m-depen

@3.1) In fs ()—n( fr()—1+ £ E@—1) (¢ i —1)|

=Com? |f, ()= 1|+ Conm*(| f, () —1 P2+ E e —1]3).

It is easily seen that (3.1) holds also true if #» is not a multiple of m.
Theore;m 2. Lgt Y, )f,,... be a strictly stationary sequence of m-de-
pendent rv’s (m fixed) with EY,=0(i. e. A,=0). Suppose that, as t —0,

t2
(3.2) fr(®)—1= — 5 h(t)(1+0)(1))
and
- 2
(3.3) fr.wm.(t)—l: - }5 rit) (1+o(l)), j=1,..., m,
where the functions hft), j=0, 1,..., m, are positive, continuous, and slow-
ly wvarying (in the sense of Karamata) as t —0 and satisfy the condition
(3.4) > liminf &y (£)/ho(£)>2m— 1.
j=1 =0
Then

sup | Fg (xB,)—®(x)| -0,

where B! =inf {t>0: t’h(t)=~ln— } and h(t)=hot)+ 5 (hAt)— 2h(t)).
Jj=1

Proof of Theorem 2. According to Theorem 2.6.5 in [7], p. 85, con-
dition (3.2) means that the df F,(x) is attracted to the normal df ®(x) and

this again is equivalent to the fact (see [7], p. 83) that the function H(2)
=[xz X3F,(X) is slowly varying as z — co.

.. 11 ,

Since 1—cos x = 5 x* for [x|=1 and E(1—costY)= f,()-—1| we have
in a neighbourhood of #=0

nt* ; _ 1lne?
thn(t/Bn) -n fy,(t/Bn) ll 2433 x\L . X'dFyI(X), t-+0.

n n''

By the definition of B, we obtain

nH(B, t|) _ 24hit B,) . mo hi(1/B,)
B? ST u',;)("‘z’" + /z‘ he(1/B,) ) s

13 Cn. Cepauxa, xn. 2
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and (3.4) leads to

(3.5) limsup '5,1(1—;;,73"" < o for every &>0.

n-—soo n

Using Karamata’s representation of slowly varying functions (see (7], p. 82)
one can conclude that
(3.6) limn f dF,,‘(x)=0 for every £>0.

n—eo lx|=e B”

By le* —1 =|x it follows that

nEe™n 1 p<8n [ aF,(x) +L H(eB,). >0,
The last estimate together with (3.5) and (3.6) implies
(3.7) lim n max Fle“"%n 1P=0

n— oo t<T
for every finite 7.
Therefore, together with (3.1) and (3.2) we have

y:] iy Bl
e YY)

m iy,
limin fg (¢/B,)=limn(f, (¢t B,) - 1 + X E(e
n n-—so0 J=l

for |t =T.
Since (3.4) implies that 4(¢) is slowly varying as ¢ -0 we obtain
. e n r*
lim Inf (¢/B,) 5 lim 5 h(t/B,)= — 5~
This relation is equivalent to the assertion of Theorem 2.
Remar k. In general, relation (3.7) is impossible for a dfF,(x) which
belongs to the domain of attraction of a non-normal stable df.
4. Rates of convergence in stable limit theorems for m-dependent rv’s.
In this section we shall extend some techniques which were developed in or-
der to determine the accuracy of approximation to a given stable df in the
case of i. i. d. rv’s. For this purpose several kinds of so-called pseudomoments
(see [2,8,9]) were introduced to express the smallness of the distance | Fy(x)
—Gap(x, ¢)| in some sense. Here we follow the concept suggested by G.
Christoph in [2] and [8). We remark that the approach devoloped in [2)
and |8)] leads to best possible estimates of D#P(x, ¢) in the the case of i.i.d.
t¢’s. To begin with we give a list of notations.
Let X,, X, and X, be arbitrary rv's on (€, A, P). Then define

Ay (x)=A(x)= A(x)=F(x)—Gaplx, c)+Fy  y(x) (Fy» Fy) (%)
FE g xyx, (X)) (Fy s Froox,) () —=(Fx  x,* Fy)(x)+(Fy Fy,» Fy)(x)
where the symbol « denotes the convolution of two df’s,

AL(x) u‘fA; vdy,  AL(x) j“ A, (ydy, m=2 3,...,
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and
A (X)=—ALX)+(—1"AL(x), An(x)=|ALX)[+|AL(x)|, m=1, 2,...
Further, define (the absolute integral difference moment, see [2; 8])

[ x 7 dA@), 0<r<l,
(r—1)...Q +8)°_":;x"’A[,[(x)dx, r=1,

where 8=r—[r], ([r]denotes the integer part of r, i. e. r—1<[r]=r) and (the
integral difference moment)

0, m=0,
Cm__‘z

m! [A(x)dx, m=1, 2,... .
0

Now we are in position to formulate the following analogue to Lem-

ma 2 in [2].
Lemma 4. Supposse that *,<-o for some r=a and L= ... =(,=0,
where s=!r), if r=[r], and s=r—1, else. Then, as t—0,
- o(| ), r¥(rl,
et dA(x) ={
(4.1) I W o tr) r=ir)

The proof of Lemma 4 employs the same technique which was used to prove
Lemma 2 in [2]. That’s why we sketch only its main idea.
Proof of Lemma 4. Put m=(r]. After m-fold integrating by parts we

arrive at

£ i1 i )
(42) T et dax) = T -G Gt GO+l (1Y + L),

where - ~
l,= { (e*—1)dA s (), 192”'; (e**—1)dA} ., (x).

—1/]¢|

= [ (e"—1dAg, () and L= | (e*—1)dAz, (x).
-1/t — oo
The inequalities | &*—1|=|tx| and leitx —1<2|tx® lead to
e ~
—|¢] {X"bd( [ YAy dy), rzl,
Il+’lals 1/\¢
—lel [ x'0d( { yEldA(y)|). 0<r<l1,
0 yl>x

and
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206 [ xPAL(x) dx, 71,
i
)+ < o

N

it [ | xlPdA(x)], 0<r<l.
x| >1/]¢

The %,< - implies that |/, +|/y|+| /3| + [y =o0(|£°) as t —0. Together with
(42) and g,= ... ={, =0 the latter relation shows (4.1). "}

Theorem 4. Let X,, X, ....be a strictly stationary sequence of I-depen-
dent rv’s and let Fy(x) belong to the normal domain of attraction of the

stable df Gap(x, ¢) with 0<a<?2, a1, B|=<1 and a=1, =0, respecti-
vely, i. e.

(4.3) fx®)—1=—c t %1 —iBsgnto(, a)(l+o(l)) as t 0.
Further, suppose that in a neighbourhood of t=0

(4.4) [ et dA(x) | =Cy 't for a<r=min(2a, |+a).

Then

r—a

sup | Fy (xn/*)—Gag(x, ©)| = oln )

holds as n —~

Proof of Theorem 4. Take |¢ =-en', where € ischosen small enough,
so that |f,(¢'n"*)—1] and | gup(t/n"*, c)—1]| are sufficiently small. Then by
Lemma 2,

s (/) — gualls )= e~<I1"[1 —exp {Inf (¢/n1)
~nin gup(t/nVe, )}l =e= %1 —exp n{g,(t/n'")}|,
where

g (tinVe)— T ettx/ne dA(x)lécT"fx (¢/nVe)—1]

+ 0o fxtn' ) =12+ Cy, | gap(t/n', c)—1 |2
Thus, from (4.3) and (4.4),

r—a

1/a N ’, @ | ¢ ltlh
n g t/n')| <Cul tl'n + T T,
n n
so that, by |e*—1|=|z|e/* and r-.2a,
r a s e

_..l[

(45) | fs () — gaplt, ©)|Coan “(t]+[t10+ t)e T
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where »n is taken large enough and & sufficiently small. Now, we apply
Esseen’s well-known estimate (see [7]):
sup | Fy (xn'®)—Gap(x, C);§% [ 1S, @/n')— gaglt/n'e, ) d—:‘
x n | £ <en ‘a n 1¢]
24

d
+ e~ SUP g Gap(x, ©).

nen

Taking into account that r=1+a the latter estimate and (4.5) show the va-
lidity of Theorem 4. [}

Remark. Obviously, if »,< o for r=a and {,= ... =(,=0, then, by
[.emma 4, condition (4.4) is satisfied. In some cases it is more convenient to
check (4.4) directly (e. g. if structure or estimates of E(e*Xi—1) (e?*X:—1) and
E(e*Xi—1) (ei’X:—1) (e“Xs—1) are known) than to verify the finiteness of x,.

This will be demonstrated in Section 5.

5. Examples. Lemma 5. Let &,, &,... be i. i. d. rv’s having the common
df Geol(x, 1), 0<a<2. Then

(5.1) lim P((n In ”)—l°k§1§k§H1<x)=Gu0(xv 1)

n—0

holds fos every real Xx.
Proof of Lemma 5. Remen}ber‘ing the fact that the cf of the product
of two independent rv’s X and Y is given by

(52) froAt)= TFx(tx) dFhx) = T fy(tx)dFy(x)
we can write
I —fee (=2 [e0" — 1)d(1—Guo (x, 1))

= 2alt]e z(l — Gaolx, 1))x—1e—(10° gx.

Since 1 —Gao(x, l)=(%—+a(x)) x—% x>0, with a(x) -0 as x - o (see [7]
p. 93), we have

o 14|
(1 —=Guolx. 1) xe—te—an® gy — 1 (2%
1 1/1¢) X) ot 1 1714) l_,—(l’lx)"
~,Jx“"dx+ 1J a%'e (W0 dx+7,f—'x dx

T (124 a(x))
x

+ f e~ % dx for 0<|f|<]1.
17.4)

It is easily seen that



198 L. HEINRICH

Vitia(x) 1
de:o(ln Tt[_) as t—0

and the other terms on the right side of the latter inequality are bounded.
Therefore, as ¢ 0,

I —fx(®=alteln , (1+o(1)).

i. e. X;=§,5, belongs to the non-normal domain of attraction of the stable
df Gao(x, 1).

Because X, + X, =E4(§,+&;) is a product of two independent rv’s it fol-
lows from (5.2) that

l~fy o, ()=2 f (=2 169" _ 1) d(1 —Guaolx, 1)).

By repeating the above procedure we obtain

I —frox O =2a(tl In 5 (1+0(1) as ¢ 0.

We see that the assumptions of Theorem 1A with a=0, 6=1/2, and
B,=(nlIn n)"*(1+o0(1)) as n — - are fulfilled. Therefore, by Theorem 1A, the
desired relation (5.1) is proved.

Lemma 6. Let &, &,,... be a sequence oy independent identically nor-
mally distributed rv's with E5, =0 and EE? 1. Then

(5.3) sup| (- T K<) —Gulx, D] s 5
X -

holds.
Proof of Lemma 6. It is well-known that the rv's X, =£,,,/E, k=1,
1119
, n, are Cauchy distributed, i. e, Ee k1% ==t GSince ‘éFnt.(z)=ﬁ—,‘

e and f=_ %X dxen, it follows that
x?

” 1
- T |y -
l—fx.+x.(t)=l-—-e—l'|+‘[e 7o T( - I___c::tx:e Ddz)dx
(

and

1
| 1 o | —costxz
= 7=

T 122 17 e 3ty
e dz—qtlxts-x--+§x—'|'-—r dz -

z

Therefore, as £—0,
” x*

1 —fx,+ % (:)-.:g¢;+|:|o},’ T g+ o)
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[ x* 1t X3

=2|t|+|4 L}‘ (e ™ —1)e

Txdx+jt}j'; e ™ —1)e ? xdx+o(t2)=2lt\+o(f).
1z

In like fashion we get

l £y o
l—lx.+x.+x.(t)=l—fx.+x.(‘)+—(mr I Je

—o0 —oo

1
,co 1—cos tyz — a3 L ;- o e —om— — S -
>‘\_‘w z2 e dzdydx =2t +2‘,2—n —.L —{. e

|y ldydx+ o) =2 t|+ ¢t e~ +o() =3¢ |+ o(e2).

Combining all these estimates we have [=_e“*dA(x)=o0(#?) as ¢t — 0.
Finally, a straightforward application of Theorem 4 with r=2 and a=1
implies (5.3).
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