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SOME NONUNIQUENESS RESULTS FOR SECOND ORDER
SEMILINEAR ELLIPTIC EQUATIONS

GEORGI 1. COBANOV

The present paper deals with boundary value problems for semilinear ellip-
tic equations of the form

Au+f(x,u)=g(x) in Q,
u=0 on 0Q

with unbounded, but growing at most linearily nonlinear term f(x, «). Our goal
is to establish some generic multiplicity results, similar to those obtained in
the now classical work [1] in the case when the function f(x,«) ultimately
increases and there is some interplay with the first, but not only the first
eigenvalue of the linear part. Here by generic we mean that no additional
conditions are imposed on the values of the derivative of f(x,u) and in fact
we do not suppose that the function is differentiable. Papers treating similar
situations (cf. for example [2; 3]), usually are based on sub- and supersolution
approach, i. e. on the maximum principle, while in the present work its use is
minimal, i. e. we use the possibility to choose positive first eigenfunction only
to guarantee that certain integral has determined sign, a fact that can be
inferred also by making additional assumptions on the eigenfunctions if differ-
ent operators or eigenvalues are studied (as in [4], for example). We should
like to note, too, that in a number of works the reverse situation, i. e. when
the function f(x, u) decreases, is studied.

The problem is studied by means of global Lyapunov-Schmidt method, used
to reduce the infinite dimensional problem to a finite dimensional one (as for
example in [5; 6], and in fact this part of our proof follows very closely the
one given there) and the multiplicity is then established by means of topolo-
gical argument (Lemma 4 below). Our main result, Theorem 1, concerning the
range of the operator in (1) is not so full as the ones in [3], but could be
completed using different technics. Then Theorem 2, which treats the simpler
case of interplay with the first eigenvalue only, is similar to the results in [7
but in a slightly more general situation of lesser regularity of the function f.

Let Q be a bounded region in R" and H be the Hilbert space /) (Q)
with scalar product (4, )y = [avu.yvdx and norm | &|},=(4, u)y. The scalar
product and the norm in L?(Q) are denoted by (#,v) and | u||, respectively,
and |u|, denotes the norm in L?(Q) for p=+2. Under appropriate growth
restrictions on the function f(x,u#) (and the hypotheses we shall make in the
sequel are even more restrictive), (1) defines a continuous mapping from /j(Q)

to H—1(Q). Following standard procedure (cf. for example [5]) we shall restate

()
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the boundary value problem (1) for g¢/'(Q) as «n abstract operator equa-
tion in A.
As is well-known, in this Hilbert space context the eigenvalue problem

Au+ru=0 in Q,
u=0 on 0Q

has infinitely many eigenvalues O<A,<2,<J3=<--- and an orthonormal system
of corresponding eigenfunctions v,, v, v3,... that have the following variation-
al characteristics

(2) Ay=min{||u|2:|u|?®=1,(u,v)=0,i=1,..,k—1}.

Moreover, the first eigenvalue is simple and the corresponding eigenfunction
7, (x) has constant sign and can be chosen positive in Q.

The main hypotheses on the function f(x, ) that follow shall be referred to
as H (i) — H (iv) in the sequel.

Hypotheses. (i) The function f:QxXR—R satisfies the Carathéodory
conditions, i. e. is measurable in x for all u¢ R and is continuous in u for
almost all x in Q.

(ii) The function f(x,u) grows at most linearily with respect to u, i. e
there exists a function k¢ L2(Q) and a constant a>0 such that

(3 flou)|=k(x)talul, ueR.
(iii) There exists a constant M, such that the function
(4) f(x, u)—Mu

is monotone nonincreasing for almost all x¢Q.

Remark. It is evident that only the case M>0 even M>A, is of inte-
rest. The condition (4) is satisfied for instance when the function is differen-
tiable with respect to #¢R and f, (x, )=M.

(iv) The limits

(6 fi(x)= lim f(x, w)/u
u— t oo

exist uniformly with respect to x¢Q and moreover

©) ) <M< fH(x).

Now we are in a position to formulate the abstract operator equation in
H mentioned above. We define a continuous operator F:H—/ implicitely by

(7) (Fu, 'v),,=£f(x, u)vdx,

the right-hand side being well-defined by virture of the properties of Niemitz-
kii's operators (cf. [8]) and H(i), H(ii) We can also establish one-to-one
correspondence between the elements of / and those of H~'(Q) as in [7] for
example. Now we have to solve for g¢/ the equation

(8) —u+Fu=g.

To this end we use global Lyapunov-Schmidt method as usual for similar
cases, following [5] or (7] for instance. In what follows we divide the study of
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the problem in a sequence of lemmas. First let 2 be the smallest nonnegative
integer such that A,,,>M and let V be the finite dimensional space spanned
by the first & eigenfunctions v,,... v, and let W be the L2 Q) orthogonal
complement of V in H, i. e. if we denote by Q the L*(Q) orthogonal projec-
tion of /A onto V, then for P=/—Q we have W= P(H).

Let us note for further use that from the variational characteristic (2)
follow

)] @, v)p=n (0, v) i=1,2,...

and hence for u¢ W, (u, v)y=0 for every v¢ V and (Pu, w)y=(u, @), for we W.
If now u=v+w with ¢V, w¢ W, the problem (8) is equivalent to

(10) A(v+w)=w—PFRv+w)=—Pg,
(1 Bv+w)=v— QFRv+w)= —Qg.

Lemma 1. Under the hypotheses H(i)— H(iii), the operator A(v+w) is
continuous, monotone and coercitive on W for every v€V fixed and hence
there exists unique solution w=w(v,y) of the equation

(12) Alv+w)=y

for every y¢ W. Moreower, the function w=w(v,y) is continuous with respect
to v and y.

Proof. The operator A is continuous, because such are the projection P
and the mapping F. For the rest of the proof we follow with minor variations
the proof in [5], using (4) instead of the boundedness of the derivatives of f.
First (2) implies || w |3, =As, /| w|? for we W. Then

(A(+w)—A(v+wy), Wy —W)y=| w,—w,|[%,
- A‘{f(x. v+ W) —M(v+w,)—f(x, U+ W)+ M(v+ w,)} (w, —wy)dx
—M || w,—w, =38 || W, —wy [}, +((1—8) Apyy — M) || @, —w, ||?

and the monotonicity follows for 8>0 small enough, since the integrand is
nonpositive. Since now

(13) (A(v+w), w)p=|| w |} —| (A(7), @)y
we estimate the second term as follows
[(A(?), @)y |=| (F(v), 'w),,fgt{!f(x, v)| | wl|dx

s [ k()| w(x)|dx+af|vx) | |w(x) [dx<C+|[]) | @]|m

where in the first inequality a well-known Poincaré inequality for functions in
H}(Q) is used; now
(14) (A(v+w), w)H

which gives the coercivity. The existence and the uniqueness of solution is
now standard from the theory of monotone operators (cf. for example [9] or [10]).
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If we now have w,, i=1, 2 solutions of A(w,+v,)=y, similar computations

give, by adding and subtracting appropriate terms, that
[ Y1=Y2 | @ =@y g = (V1Yo W1 —Wa)y
=8 | w,—w, |3 —C| f(v,+w)—f (et w) || || 0y —wy |

i e | =@y | p=8C(||y1—yallu+| fer+w)—f(Tatw)|)
and the continuity follows from the well-known results about Niemitzki’s
operators in the spaces L?(Q). Furthermore, if w(y, v) is a solution of (12),
then (14) implies
(15) (Y, V) [[g=8""C(1 +||y g+ 7))

Now we define a continuous application from V in V and we shall study
its properties. Let B: V—V be defined by
(16) B(v)=B(v+w(y, v))

for fixed y¢ W. It is clear that the mapping thus defined is continuous in V'
(even in both variables). For the sequel we shall need the following definition.

Definition 1. A continuous mapping from a topological space X to a
topological space Y is called “proper” iff the invers image of every compact
in Y is compact in X.

The next lemma deals with this notion, but for the sake of further needs
we formulate it in a slightly different manner.

Lemma 2. Let y, and z, be bounded sequences in W and V, respecti-
vely, and let v, satisfy the equality

(17) B(vn+u’(ym 'D,,))=Z".
T hen the sequence w, is also bounded.
Proof. Let us suppose that on the contrary, £,=|v,||->+c. For
W, =w( Y, ,) (17) implies that A(v,+w,)=y, Then for ¢, above, (15) implies
[t @a| p=871Ct T (V4| Yallat [T )= C
Since V is finite dimensional and f¢,'| v,| =1, Sobolev’s imbedding theorem
implies that there exists a subsequence, which we again index by n, such that
t'w,—~w, strongly in L¥Q),
t'w,(x)—~wy(x) a. e. in Q,
t'v,—v, inV,
£ v, () —vy(X),
the last even uniformly. For a,(x)—£ '(v,(x)+w,(x)), we have a,—a, in

12(Q), a,(x)—~a,x) a. e. in Q and a,(x) + 0, since |7,/ =1. From (3) it follows
that the functions

(18) BaX) =1, f (x, tya,(x))

form a boupded sequence in L3(). Let x¢Q be a point in the complement of
a set of measure zero, such that a,(x)>>0, a,(x)—a¢x). Then for n sufficiently
big we have a,(x) =0 and f,a,(x)—~+ co. Hence
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gax)= L5 o (o) —fHx)a(x).

In the same way, if ay(x)<<0, g,(x)—f(x)ay(x) and finally g,/x)—0 if ay(x)=0,
the last case being a little more delicate. In brief we can write

8:(x)—f*(x) max {ay(x), 0}+ f~(x) min {a(x), 0} = go(x).

Since (3) implies that f*(x)¢L=(Q), g(x)€L2(Q). Thus we have a sequence
g.(x)€L3(Q), with g,(x)—gy(x) a. e. in Q and || g,| =const. This is sufficient
to deduce that g,—g, weakly in L2(Q) (cf. [10], Lemma 1.3). From the de-
finition (11) of B(v+w) and those of Q and F, it follows

1 N 1 }‘: 1 1 Up+w,
t,| &'vn""wn)"t,. 'vn_‘__l l_."‘;t" f(x» tn t, ')ﬂ:(x)dx"vi

and the convergence considerations above imply that

&k
lim £,1B(v,+w@,)=vdx)— T - [ & (x) ()dx. v

On the other hand, lim#!| z,||=0, so we obtain
(19) %(x)_é;TITJ 8 (x)v,;(x)dx.v;=0.
The function gy(x) can be writen also as
5 U0+ 77 (0o (x) + 5 [FH(0)—F~(0)] | a0 () |.

By multiplying now (19) scalarly by o,(x), since a4(x)=7yx)+wy,(x) and
w,, v,)=0, one ge ts

20) S M) @+ @)+ (FF =) | U+ w, [Joidx=0.
But now (6) implies that %(f*(x)——f—(x))>0 in Q and that

|3 (S0 +F )~ [ =5 (FH0)—f(x)),

i. e. the first term in (20) is nonnegative since 7,0, w, | v, and then v,+w==0.
Since 7,(x) is positive in €, this provides the desired contradiction.

Corollary. For any ye W fixed, the mapping B(v) is proper.

Proof. Obvious.

The result just obtained shows that if we take the one-point compactifi-
cation of R* that is S*<R**!, we can extend B to a continuous mapping
B.. :S*—~S* by putting B.(co)=co, i. e. to obtain a continuous mapping of
the unit sphere into itself. As is well-known, for such mappings the topological
degree is defined, which we denote by deg B (cf. [12]).

Lemma 3. deg B..=0.

Proof. H(iv), (4)—(6) imply that there exists a function y¢€L2(Q), such
that for all # in R

' f(x, u)—hu=v(x).

15 Cn. Cepanxa, xn. 14
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Now the definition of B, (9), w(y, v) L7, and 7,(x)>0 imply
—(B@+ (3, ). 0= — k(@ v+ [ (6 vy, D= 7).

The last inequality shows that the mapping-B is not onto, its image being
always “above” a certain hyperplane. Nor then is the mapping B.. onto, which
allows to conclude that deg B..=0. (The fact that B.. is not surjective implies
that it is homotopic to the constant map of S* and the last has degree zero).

Before proceeding further on, we need the following

Definition. Let f: X—Y be a continuous mapping between two topo-
logical spaces. A point x¢ X is called “regular” for f iff there exist neigh-
bourhoods xcU=X and f(x)e V<Y, such that f:U—V is a homeomorphism.
A point y¢Y is called “regular value” for f iff all the points in {f~Y(y)}are
regular (cf. [12]).

Lemma 4. Let [:S*—S* be continuous, deg f=0 and let v be a regular
point for f. Then there exists at least one more point z, such that f(2)=f(v).

Proof. If y=f(v) is not a regular value, then by definition there exists
a point z with f(z)=y, which is not regular for f. Thus we can limit oursel-
ves to the case when y is a regular value and suppose the contrary, i. e. that
f(2)+y for z==v. Then there exist neighbourhoods U and V of v and y, res-
pectively, such that f(U)=V, fiv is a homeomorphism and F(SANU)= S\ V.
Furthermore {/ and V can be chosen homeomorphic to the upper hemisphere
S* . Indeed, let U, and V; be neighbourhoods of ¢ and y, respectively, such
that f maps U/, onto V, homeomorphically. Such neighbourhoods exist accor-
ding to the definition of regular point. Moreover, since S*\ U, is compact

the same is true for f(S*\ U,) and since y¢f(S*\U)), there exists a neigh-
bourhood V of y, homeomorphic to % and such that VNS U,)=Q. For

U we take f~Y(V). Since V<V, and f is a homeomorphism onto V, U is also
homeomorphic to §*. Now we have F(S\U,))=S*\ V. On the other hand,
fUNU)=V,\V, i. e. we also have f(S¥\U)=S*\ V. Contracting now
S*\ U and S*\_V to points we obtain a map which is a global homeomorphism
of S* and is homotopic to f by means of the above contraction. As is well-
known, the global homeomorphisms of S* have degree +1, which contradicts
Lemma 3. (cf. for example [11] or [13] for similar topological arguments.)

Now we can sum up and state the following qualitative result:

Theorem 1. Under the hypotheses H(i)— H(iv), the boundary wvalue
problem (1) (or what is the same, the equation (8) in h) either has no so-
lution, or has at least two solutions with possible exception at the images
of some singular points, where there may be uniqueness. In particular, there
i$ no uniqueness at regular points. Moreover, the mapping |—F is proper
and hence its range is closed.

Proof. The only thing there is to prove is that /—F is proper, everything
else following from lemmas 1-4. To this end let us first consider the mapping
G:H—H defined as follows: G(y, v)=(y, Blv+w(y,v)). If K=H is compact
and (y, v, is a sequence in G YK), for z,=B(v,+w(y,v,) we have
(2, v,) €K and hence there exists a constant C, such that ||y, |,=C, | 2,|=C.
Lemma 2 implies that | v,| is also bounded. Since V is finite-dimensional, we
can choose a convergent subsequence, which we again index by n. The fact
that we can choose similar subsequence from y, is obvious from the defini-
tion of G. i we now have (v,+w,)—F(v,+w,)=2,+y,6K, then in fact
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w,=w(y, v,) and we can extract a convergent subsequence from w,, too,
since the function w:H—-W is continuous. The fact that the range is closed
is a trivial consequence from this,

Example. We give the following obvious one. Let the function f:R—R
be differentiable and satisfy H(/)—H (iv). If moreover f(0)=0 and f'(0) =%,
then the equation

Au+f(u)=0 in Q,
u=0 on 0Q

has at least one nontrivial solution, since now the origin is a regular point by
the invers function theorem.

The question of more detailed description of the range remains open as
far as the methods we had used till now are concerned. However, in the case
when interplay with the first eigenvalue only is allowed, we can go a little
further and obtain the following precisation of Theorem 1.

Theorem 2. Under the hypotheses of Theorem 1 and the additional
assumption that M<Xy, we have that the only points at which the unique-
ness is possible are on the boundary of the range R(—I[+F) of —I+F.
Moreover, there exists a continuous function <(y) defined for y¢ W, such
that the boundary of R(—I+F) is given by y+t(y)v,, while R(—I+F) con-
sists of the points of the form y+sv, for which s=1(y). In particular int
R(—1+F)={y+sv,:s>1(y)} and at any point g in int R(—I[+F) the equ-
ation (8) has at least two solutions.

Proof. In this simpler situation v=fv, and Lemma 2 implies that
| B(tv,)| - for |¢|—>co, while the proof of Lemma 3 contains the fact that the
function —B(tv,) is bounded from below. Let t(y)=min—B(tv,) for t€R. Itis
obvious that a point y+sv, is in the range of /—F iff s=1(y) and also that
for s>t(y) the solutions are at least two, one on each side of any point at
which the above minimum is attained. It remains to prove that t(y) is conti-
nuous with respect to y. But writing with more detail

B(tv,)=B(tv, +w( y, tvy))

we see, that considering ¢ as parameter, the function t is the minimum of a
family of continuous functions, so it is upper-semicontinuous. On the other
hand, the range of —/+ F can be identified with the epigraph of the function
7(y) (making the obvious identification WXV ~WXR') and Theorem 1 says
that this epigraph is closed. It is well-known that a function is lower-semi-
continuous if and only if its epigraph is closed, so t is continuous being both
upper- and lower-semicontinuous.

Remark. It is not hard to see that now making additional hypotheses on
the differentiability of the function f(x,u) with respect to u, or supposing it
monotone or convex one can repeat the considerations in [3] and obtain results
concerning the uniqueness at all boundary points of R(/—F) or the additional
properties of the function t in the particular situation of Theorem 2,
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