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ON A REPRESENTATION OF MIXED FINITE DIFFERENCES
PETER G. BINEV, KAMEN G. IVANOV

A representation of mixed differences as a combination of forward finite differences is
given. Two applications of this decomposition are made.

1. Finite differences. Let X and Y be real linear spaces. For each ¢ X
we define the translation operator 7(k): Y*—Y* by T(h)f (x)=f(x+h) for each
f: X—Y and x¢X.

It is well-known that {7'(k): % ¢ X} is an abelian group with superposition
as a group operation.

For k¢ N and 4 ¢ X we define the usual k-th forward difference as

(1) A= E (— 1) T,

Obviously A*(h)AY(h)=A**(h), and the finite difference operator commutes
with the translation operator. Let us also mention the formula A*—#)
= (— DT (—kh)AX(R).

Let a=(a;, dg,..., &,) EN", o] = __Zlu,- and h=(h,,..., &k,) € X™ We de-

fine the a mixed finite difference with a step 2 by A%(h)=A%(k,)A%hy).. .,
A“m(h,,).

The aim of this section is to represent the « mixed difference as a sum
of forward differences of order |a|. Another decomposition of this type is given
in [1). The reasons forced us to consider a new representation will be dis-
cussed later.

It is easy to find that

A () (h) = A2 () — T )ax M1 ),
The above formula for a given function f says

f(hy+hg)—f(h,)— flhg) +£(0)

= [fihy+ k) —2f () fON - [ Sk — 2B+ f(g)).

2

Therefore, to get our representation, we add the point (k,+#4,)/2 to the points
0, hy, hg, h,+h, But even the difference A'(k,)A%k,) causes big difficulties —
in the representation in [1] nine points are added to the original six points.
The following theorem is our main result.
Theorem 1. For each a ¢ N™ there are a natural number N, numbers b,
and vectors u*, v ¢ R™u*=(uy, ..., ut)) (v=1, 2,..., N) such that
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260 P. BINEV, K. G. IVANOV

i)y 0=o), v'+|ajwy=sq for i=1,2,..., m and v=1, 2,..., N;
and for each h ¢ X™ we have

N m m
iy A%h)= ZbAC(Zuth)T(Z vh).
v=1 i=1 i=1
We divide the proof of Theorem 1 to some steps.
R R
MLemma 1. Let k Me N, M=k, & €R, k%0, T(h): R —R, T\(h)
— X a.T(ih) for some real a; and T\(h)P=0 for each P ¢ H,_, — the set of

i=0
all algebraic polynomials of one real wvariable of a degree at most k—I1.
Then there are numbres {b;: j=0,..., M—Rk} such that

M—k
Ty(h)=aYA) [ Z b/T( Jm).

Proof. We get the numbers {b,} as a solution of the linear system

min (4,k) k i
(=D, )—,=a; for i=0,1,..., M-k
r=0
The system has unique solution because its determinant is equal to 1. To com-
plete the proof we should show that for the numbers {c} given by
A

c;= fo(—l)'"“"—'(M_ki_,)bM_, we have ¢,=aq, (i=M—k+1,..., M). So we
consider the operator

TW= T~ ANA T bTURI= | E,  (@—c)TGh).

M—k+1

From the conditions of the lemma 74(k)P=0 for each P¢ H,_,. Therefore

M
z (a,—c¢,) (ihy=0 for s=0,1,..., k—1.
i=M—k+1
The determinant of this system is Vandermond’s determinant and hence a,=c,.
This completes the proof.

The next lemma is the basic step in the proof of Theorem 1.

Lemma 2. If k¢N and N=k*—1, then there are constants b, j
~0, 1,..., k) and ¢ (=1, 2,..., k, v=0, 1,..., N) such that for each
hy, hy€ X we have

X 1 : < w1 (i=J 1
arwin = £ 2 0,800 (b ) TR

] N a4l ”l v
+ X X cwA (—)T(mhl""

poesl  vel k41 h”)

M
k+1

Proof. We consider the operator

&
@ DA, t. = £ T ayT(i—]th-+ jw),
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where A={a;;:i,j=0,..., k}, a;; and ¢ are real numbers. Using (1) and (2)
we get

INSES

5 i—j 1 :
,Eo a; ;AR (%ﬁ hy+ g o) TURYD

=0

k41 k
='E (1 DA, g ) TG ha).

or

k k » .
D(A. 1, h)T(ha)+(—1D*D(A, O, k) = I T a, A% (42th,
j=0 i=0

L TR+ T (-1 DA, =B k)T y)
k41 2 1 u—t ) *( u ) * TRt l) R+1 2)

Therefore to prove Lemma 2 it is enough to show that there exists a matrix
B={b;: i, j=0, 1,..., k} with the properties:

3) D(B, 1, h)=(—1)}*D(B, 0, h)=A*h)

and

(4  for each p=1, 2,..., k& the operator D(B, k—"_H—, k) is a linear combi-

nation of the operators { A*+1 (—}@:l—)T(k"—Hh);n=0, l,...,N}

R R
In (3) and (4) we may assume that 7(k): R —R Dbecause all transla-
tions are with vectors collinear with 4. In view of Lemma 1 the condition

(5)  D(B, - h)P=0 for each P¢H, and each p=1,2,..., k

provides (4). The rest part of the proof is an algorithm for construction of a
matrix B satisfying (3) and (5).
For real A and matrices A={a;: i, j=0,1,..., k} and A’'={a,,: i, j

=0, 1,..., &'} we get from (2)
D(MA, t, h)=AD(A, ¢, h);

©® DA+ A, b h)=D(A, t, y+D(A', t, h) if k=K.

We introduce an operation = between two square matrices by
(7 AeA'=A" v A={a; i, j=0, 1,..., k+Fk'},
where a,,=Z%a,, q,, and the sum is over all indices i, Jy» lg Jo. satisfying
the conditions: i, +ig=1, ji+ f=j. 0=iy, ik Osiy HhSR'.

Now (2) and (7) give

(8) D(A A, t, h)y=D(A, t, YDA, L, h).



262 P. BINEV, K. G. IVANOV
We set

P e A

Apir,=Ap,* A1o5 Apiy, ri1=Ap, *» A1 for k=1, 0<r=k.

The above definition is correct because the operation % is commutative.
Obviously

(10) D(A,,, t, h)=A\h), D(A, ,, t, h)=A\2th—h)T(h—th).
From (8), (9) and (10) we get
(1) D(A,.,, t, h)=A*"(h)A"(2th—h)T(rh—trh).

Now (11) gives
D(A,,. t, h)x*=0 for s=0,1, ..., k—1;

(12) D(A,,, t. h)x*=k! (2t—1Yh*

and
D(Ag.» 1, h)=AKhR);
(13) D(A,. . 0, h)=A*~" ()N (—R)T(rh) = (1Y AXh).
Now we define B as follows:
a) if k=2m then B= f a,A,..,, where {a,} satisfy the system (with Van-
r=0

dermond’s determinant)

m . m ~_2El__‘_ , B N .
(14) ,an’ 1; ,E(,(k+l 12 a,=0, p=1,2,..., m
b) if k=2m+1 then B= Zoa,A,,,,+,. where {a,} satisfy the system

m m 2 - .
(14’) z,oa’zl; IEO( Vk:l —l)’+lar:0' K= l- 2"'-- m.

Now (5). (13) and (14) or (14) give (3). From (6). (12), (14) or (14') and
the equality k2~:ll"l = —( %)—l) we get (5). This completes the

proof. . ‘

Proof of Theorem 1. Applying a, times Lemma 2 with k=X, A, +1,.., 4,
1y -1 we get Theorem 1 in the case m=2. Now we use some times Theo-
rem | with m =2 to prove the part ii) for arbitrary natural m. Parti) is equiva-

lent to the condition

i EVih €N h). (07 [aluph ena h)

m
for each v, where Il(a, A)={ E't‘a,h,: 0=t,=1). Obviously the representation
-

in Lemma 2 satisfies i). Also iii) is conservative under the application of

Lemma 2.
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Remark 1. For each a the numbers b, and the vectors u¥, vW(v=1, 2,
..., N) in Theorem 1 can be given explicitly following the proof. Obviously
these numbers and vectors are not uniquely determined. Hence the following
two problems can be considered (cf. Theorem 2):

Problem 1. For each a ¢ N™ to find this representation of the type ii)
for which ZQLlﬁbvi is minimal.

Problem 2. As Problem 1 but the representations should satisfy i).

In the case a=(l, 1) the optimal representation for Problem 2 is given
in the beginning of the paper and for it £|b,|=2. For Problem 1 it is

Al(hy) Al(hg) = —-(A¥(y) + A¥frg) — T(2h) A%, — hy)).

Remark 2. In Theorem 1 the vectors A, i=1, 2,..., m can be linearly
dependent. In particular they can be collinear to a given vector.

Remark 3. The reason we introduce the representation in Theorem 1 is
the following : the representation of the type ii) in [1] does not satisfy i). In
other words the vectors in the right-hand side of the decomposition do not
belong to the convex hull T(a, k) of the vectors in the left-hand side. This
would make difficult such types of applications of the representation as in the next
two points because it need proper extensions of functions outside the domains
they are defined. Also the existence of such extensions sets additional restric-
tions on the domain.

2. A relation between two moduli. In this and the next point “domain”
means a closure of an open connected set. Also S denotes the closure of
the set S.

Let D be a domain in R™. We set

D(k, h)={x ¢D: x+kht ¢ D, 0=t<=1} for k¢ N, 2 ¢ R™ and
D(a, h)y={x€D: x+ 5 ath €D, 0=t,<1} for a¢N™ h¢R™
i=1

For f ¢ L,(D) (1=p=-c0) we define the following moduli:
(15) ([ O)p=sup {[| A*R) [ [|c o0m my = b €R™, E [hi|<8}

for k¢ N and >0, and
o f3 €)p=sup{ | A“(h)frl’(o(,,;.),: he¢R™ |h|s6E, i=1,..., m}

for a¢ N™ and € ¢ R™ g,>0,i=1, 2, ..., m.

It is easy to get by Theorem 1 the following relation between these
moduli

Theorem 2. For fel, (D), a¢N™ e¢R™ g >0, i=1,2,..., m we
have

odf: = CE (b)) ou (i [a ]~ E ),

where b, are given in Theorem 1.
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In this application of Theorem 1 the condition i) provides

X+ }:l'v;h,.eD(]aL T wh,) if x¢€D(a, k) (cf. Remark 3).
i= i=1

For functions periodic in R”™ and properly defined moduli an analog of
Theorem 2 holds true. We can derive this analog from Theorem 1, or from
the representation in [1]. But Theorem 2 as it is stated cannot be derived
from the representation in [1].

3. A generalization of Whitney’s theorem. We use the notation w,(f; D),
=i f; k. diam D),, o (f; D)=04f; D). In [2] Whitney proves

Theorem A. For each n¢ N there is a constant K, such that for each
function f continuous in [a, b] we have

1f=P |ctan=K,0.( f3 [a b))

?vhere P¢H, , and P(a+i(b—a)/(n—1)=f(a+i(b—a)/(n—1)) for i=0,
yeouy n—1L
There are many generalizations of this theorem at the present moment
(see e. g. [3]). We shall consider only the following one given in [1].
Theorem B. Let D be bounded Lipschitz-graph domain in R™ and
1 =p<co. Then for each n there is a constant K, depending on n and D,
such that for each f¢ L,(D) there is P¢ HT | such that

ITf—PIILp(o)SKm,,(f; n—tdiam D),
where Hm = {P(x)=Za.x": a € Z7, |a|<k, x€R™, aq R}

Here Lipschitz-graph domain means that for each x ¢dD in a neighbour-
hood of x the boundary can be given as the graph of a function satisfying
the Lipschitz condition.

In Theorem B the restriction that D is a Lipschitz-graph domain comes
from the need to extend properly f outside D (cf. Remark 3). Now we shall
generalize Theorem B in Theorem 3 for p= o and Theorem 4 for 1=p<co.
These theorems cannot be improved with respect to D in some sense as it is
shown in Example 1. We can simply get Theorem 3 from Theorem B and Lemma 3
as we proceed in the proof of Theorem 4 but we wish to show that Theorem 3
can be obtained as a consequence of Theorem 1 and Theorem A avoiding the
rather technical Theorem B.

Let Ext D, Int D and T'=R™ (Ext D ) Int D) stand for the exterior, the interior
and the boundary of the domain D, respectively. Then we have D=T|)IntD

~IntD. We set B(e);{yGR"=I”1|3IY?<5’} for e>0 and AL ={y¢R™: Iyih

-0} for A€R™

The domain D—R™ is said to be a segment-graph domain if D is bound
ed and for each x¢T there exists £¢R™ real numbers #<0<¢#’ and an
open set V—R™ V30, such that for each z¢ V(1A' the set I'(x, &; 2)
={yer:y=x+z+th, t'<t<t'"} is closed and connected, i. e. I'(x, /25 2)is
a closed interval or a point.

For example each Lipschitz-graph domain is a segment-graph domain be-
cause then I'(x, k; z) is always aone-point set and moreover there exists
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¢©: VN AL —R satisfying the Lipschitz condition such that I'(x, #; 2)={x+z2
+ho(2)} for each z¢ VN AL

Theorem 3. Let D be a segment graph domain in R™. Then for each n
there exists c—=c(n, D) such that for each F¢ C(D) there exists P¢ H,
such that | F—P|cw) =c.0,(F; D).

To prove Theorem 3 we need some lemmas.

Lemma 3. Let 0<a<b and for g¢Cl0, b] w2 have | g |cp.q SKo,(g;
(0, @])). Then | glcpn=Q2"K+20=YMw.(f; [0, b]), where r¢N, r—1<(Inb
—Ina)/(Inn—In(n—1))=r.

Proof. Let b<na/(n—1). Then for x ¢ (a, b] we have

(16) &0 =IA"(5) O]+ T (7)]g(—4 0| =(@—DK+Dodlg: 0.6

If b>na/(n—1), we set a; =( n"_I Ya, j=0, 1,..., r (r is given above) and

apply r times (16) with a=a,_,, b=a; j=1,2,..., r—1 and a=a,,, b=0.
Lemma 4. Let ge¢ C[0, a]) and |g(air™)| =M, i=0,1,...,r. Then
| gllcro.a) =Ci(r)®,+1(g5 [0, al)+ Cy(nM.
Proof. Theorem A provides us P¢ H, such that

|| g—Plcp.a) = K+19,44(g5 [0, a]) and Plair)=g(air™)

fori=0, 1,..., r. Therefore | P(air—')| <M fori=0,1,...,r. Now Lemma 3.1
in [4] gives || P/|cjo.a) =C(r)M. Hence || g|lcpo.a) = | Pllcio.a) +| 8— P cro.qg =C(r)M
+ K, ,0,:(g; [0, a])

Let Ay, Ay, ..., iz,, be vectors in R™ By S,=S,(%,,..., k,; z) we denote
the set of all points in R™ of the type z+13'1 ah, ;, =0, 1, 2,... ,él a; = r.
Then S; stands for the closed hull of S,.

Lemma 5. There is a constant c(r, n) such that for each F ¢ C(S)),
F(x)=0 for x¢S, we have i[F“qs;)SC(r. n) o, (F; S)).

Proof. We prove the lemma by induction with respect to n. If n=1
then Lemma 5 coincides with Theorem A. Now let Lemma 5 be true for n.
The idea for proving it for n+1 is the following. Let us assume that

(17) | Fx) | sey(r m)@py(Fs5 Sihy, ooy Rpirs 2))

For X(S:(hp ) hn; 2+(r—‘i)h,'+‘). i= 1, 2, eocy Po
Then for each ¥ € Si(Ay, ..., hu+y5 2) We consider the restriction of F on the
line passing through y and 2+ rk,;,. This line intersects {z+rh,4,} and S;(k,,

oy hyy 24 (r—ihayy) (i=1,2,...,r) in equidistant points. So in view of
(17) Lemma 4 proves Lemma 5.
To prove (17) we consider the functions

(18) . g(x)=A""i(h, ) F(x), i=1,2,...., 7

for x ¢ S}(hy, ..., h,: 2). Obviously g(x)=0 for x¢€ S{hy ..., h,; 2) and by
induction we get

(19) glx) | s cgld, Yo (&5 Sy ey hai 2)
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for x €Si(hy, ..., h,: 2). But Ai+i(h)g, = A (R)A (A )F and Theorem 1 gives

(20)  ©44(& Silhy - ooy hay 2D=Cal NO(F5 S)) Gy eeos Baia's 2).

Now combining (18) with (19) and (20) we get (17) step by step for i=r,
r—1,..., L

Proof of Theorem 3. Foreach x¢T we have # ¢R” and V30, V—an
open set in R™. The set I'(x, £; 0) is closed and non-empty (x € I(x, &; 0))
and hence there are numbers £, f5, such that ¢ <£,<0<£, <t and y,=x
+¢t,hel. Then y, and y, belong to IntD or ExtD. It is impossible both points
to belong to one of these sets. Really, if we assume that y,, v, € ExtD, then there
is £>0 such that y,+B(e)={y,+y: y€Be)}}<Ext DN {x+z+th: z¢ VN h',
<t<t') for i=1, 2. But x ¢ IntD and hence there is va€Int D, v;3€ x + B(e).
If yy— x+ 23+ t3h(25 € V(1 AL) then we have £/ </, < —e<ty<e<ty<t'' and hence
I'(x, &; z;) is not connected, which is a contradiction. Therefore y, € IntD and
vy € ExtD (we change & to —# if necessary).
- Now for each x ¢ ' we set (h, & £, ¢, given above) U(x)—{yv€¢R™: y=x
2+ th, zeB(g/2)NhL t, —€2<t<t,} and G(x)={yeER™: y = x+2z+th,
2 € B(g/2)( k', | t,—t|=€/2). Then G(x) is closed, G(x)=intD, u(x) is open,
u(x)) x. T' is compact and hence there is a finite subset {x,:i=1, 2...., Njc=T

N N N
such that YU (x,)>T. Let D, (D U U(x)))J UG(x,). D, is a close subset of
1 1 1

the open set Int D. Therefore we can find a finite number of closed cubs {T,: i
M

-1, 2,..., M} with edges parallcl to the co-ordinate lines suchthat 7= 7,
=1
is connected and D, =T ~IntD.
We choose x, and linear independent vectors Ay, ..., h, ¢ R™ such that

S: (..., hyy Xo)=T. Then there is unique P¢ 7y | such that P(y)=Fy)
for vy ¢ S, (A, ..., h,; xp). Applying Lemma 5 for F—P we get

(21) | F(x) —P(x)|<c(n, myo,(F; D)
for x €S, (4, ..., hyi x,). Now using (21) and Lemma 3 we can pass from
one to another cube from {7;:i=1,..., M} and we get that (21) is true

(with another constant) for x ¢ 7. At the last using G(x)c7 and Lemma 3
we prove the theorem.

Remark 4. Without any modification of the proof we can prove Theo-
rem 3 for bounded functions if we use instead of Theorem A its generaliza-
tion given in [5] by Whitney.

Now we give a generalization of Theorem B in the case | =p< -o.

Theorem 4. Let D be a segment-graph domain in R™ and 1 <p< o.
Then for each n there exists ¢ —=c(n, D) such that for each F¢l (D) there
exists P¢ H™  such that | F—P|ltp) cw,(Fi D),

To prove this theorem we need an analog of Lemma 3 for L,(1=p<eo).
Let £ ¢R™ and F—h' be a measurable set, 0<<e<x< o and a(z) be a func-
tion defined on £ and satisfying the inequalities e<a(2)=x. We set V(a)=={x
¢R™: x —z+th z¢E, 0=t=a(2)} and V(c)= V(a) when a(z) ¢ - const.

Lemma 6. If g€ L,(V(0) and || gl v Ko (g: V(e), then

I ﬁ.'”',,( vy = 27K+ 2™, (g5 Via)),

where ré¢ N, r 1 <(Inx—Ine)/(In(n+1)—Inn)-_r.
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Proof. Let us denote V,=V((c)N V(n—1)*en—*). We shall establish for
each £=0, I,..., r the inequality

(22) 'l g ”Lp( Vk)é(anK'f' 27k — 1)0)n(fv Vk)p'

The assertion of the lemma follows from (22) because of V,=V(a). For £=0
(22) coincides with the condition for g. Let us assume that (22) holds true
for k. For x¢ Vi "V, we have x—ie(n+1)y'n*"1¢V, for i=1,2,...,n
and hence

I | . — ! R ] | N R
! g|eruk+p =g ll,pukH" 8L, (Ve \Vp

i W BN . +1
=g levp+ () llg( —i R e o N AU

n+1

| € +1 I
+ A" (- () B g —e (Y AL vp vy

=(1+@2"=1) [8ll, v+ 0xg5 Vi), <(2'2F"K+2¢"—1) + 10 (g Vis1),-

This completes the proof the Lemma.

We may prove Theorem 4 by the same method as Theorem 3. For that pur-
pose it is necessary to use Lemma 6 instead of Lemma 3 and to replace
Lemma 5 with its analog for 1<p< <o, which can be obtained using the mo-
dified Steklov function. To reduce the proof we use directly Theorem B. Ob-
viously the proof is also valid for the case p= co.

Proof of Theorem 4. Under the notations of the proof of Theorem 3
the set 7 is Lipschitz-graph domain. Applying Theorem B for it we get that
there exists P¢/ ™ | such that |F—Plle(n<Kwn(f; T7),. Using Lemma 6
for the sets u(x;)N D, and function g=F—P we obtain that the above
inequality holds true for D (with a bigger constant). The theorem is proved.

Example 1. Let D,={(x;, x)€R: 0=x,=1, ax}=x,=x}} for a<].
For a<0 D, is a segment-graph domain (but not a Lipschitz-graph domain)
and Theorem 3 is valid. But a theorem for D, (0<a< 1) as Theorem 3 can not
be true. For example if fe(x;, x;)=sing|Inx,|(e>0) then inf{ilf;——PHc(pa. P
€ H? }=1 (n fixed) and o,(fe; Dy)=c(a n)e" if e—-0.

Example 2. Let D={(x, x5 x;3) €R?: x24x2<1, | x,|<x3+x3}. Then
D is not a segment-graph domain but Theorem 3 is true for D. We can easily
prove this proceeding as in the proof of Theorem 3: first we consider the
subdomain {(x,, Xy xg): 1/2=x3+x3<1, | x,|<1/2} and after that the remain
of D. But for the two-dimensional analog of D—D’"={(x,, xg) €R™: | xy|<1,
|x,|==x3} (D’ is not a domain) Theorem 3 is not true. If f is given by f(x,,
Xy)=x, if xg7=0 and f(x,, xg)=—x, if x,<0 then we have o, f; D")=0 for
each n=2, % .. but f is not a polynomial.
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