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COMPACTLY DETERMINED EXTENSIONS
OF TOPOLOGICAL SPACES

DOITCHIN B. DOITCHINOV

The notion of supertopological space, introduced earlier by the author, is used for con-
struction of some kind of extensions of topological spaces.

The notion of supertopological space comprising as special cases the no-
tions of topological, proximity and uniform spaces was introduced in [4] under
the name generalized topological space. In this paper it is used for description
of some classes of extensions of topological spaces.

Let us recall that an extension of a topological space X is a pair (¥, ¢)
consisting of a topological space ¥ and a dense embedding ¢: X— Y. The
extension (X,7), where i: X— X is the identical mapping, is called trivial
extension of the space X. Two extensions (Y}, ¢,) and (V,, ¢,) of the same
topological space X are called equivalent to each other if there exists a ho-
meomorphism A: Y; — Y, with ¢, =0,. When the space Y has a given pro-
perty (such as regularity, compactness, local compactness, etc.), then one usu-
ally says that the extension (Y, @) itself possesses this property. Compact ex-
tensions are usually called compactifications.

Here in Section 1 the definition of supertopological space and its main
properties are briefly reminded. In Sections 2 and 3 all the statements are
given, as a rule, with their detailed proofs. Section 4 contains some results
whose not difficult proofs are omitted.

1. Supertopological spaces. Supertopological space is a generalization
of the notion of topological space considered with its classical Hausdorff
axiomatic, wherein the concept of neighbourhood is taken as fundamental.

Let X be a set, #(X) be the power set of X, and #(X) be the collec-
tion of all single-point subsets of X.

A supertopology on X is a pair (#,¥") consisting of a collection .# of
subsets of X with J(X)c#<=P(X) and an operator ¥ : M — P(P(X)) as-
signing to each A¢.# a filter ¥(A) in X — the filter of the “¥"-neighbour-
hoods” of A. The following conditions are supposed to be satisfied :

(1) if A¢.# and U€¥(A), then A= U;

(2) if A¢# and Ue¥ (A), then there exists a Ve¥ (A) with Ue¢¥ (B) for
any BcV, Be#.

Note 1. In the case when ()¢.# the collection ¥((2) must satisfy all
the conditions for a filter except eventually the requirement (@ ¢ ¥((). In other
words, it is permissible to have @¢¥ (@) and therefore ¥ ()=2(X).
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270 D. DOITCHINOV

A set X with a supertopology on it is called supertopological space.

Obviously in the case .# = ¢ (X) (when the collection .# can be, in fact,
identified with the set X itself) the notion of supertopological space coincides
with the standard notion of topological space, because then the upper two
conditions are nothing but the well-known Hausdorff axioms for topological
spaces in the formulation given by Bourbaki [2].

On the other hand, in view of the inclusion # (X)=.#, any supertopo-
logy (#,%) on X induces a topology on X. Thus every supertopological
space is at the same time a topological space. When X is a topological space,
any supertopology on X iducing the given topology is said to be compatible
with it.

A supertopology (.#,¥) is called symmetrical provided the following
additional condition is fulfilled:

if A,Be.# and AN V=@ for each V¢¥ (B), then BN U+ for each
Uey (A).

One can see that the notion of symmetrical supertopological space in the
case # =2 (X) coincides essentially with the standard notion of proximity
space. Indeed, let (2 (X),¥") be a symmetrical supertopology on X and let
us say that A is close to B when U B+ @ for each U¢¥ (A). It turns out
that the relation so defined is exactly a proximity on X in the usual sense,
and that any proximity on X can be obtained in this way.

So the notions of topological and proximity spaces are special cases of
the notion of supertopological space.

Remark 1. The notion of uniform space can also be obtained as a spe-
cial case of the notion of supertopological space. But for this aim the axioms
(1) and (2) must be reforinulated in another manner (cf. [4] and also [6]).
We shall not discuss this question here.

l.et us remind some of the most simple basic properties of supertopolo-
gical spaces (we omit their prools which are direct). Suppose we are given
a supertopology (.#,¥") on a space X. Then:

for each A¢.# the filter ¥ (A) possesses a base consisting of open sets
(X considered as a topological space);

if A, Be# and B-A, then ¥ (A)=¥ (B);

&
if Aje#, U ev (A), i-1,2,...,k and if ﬂlA,e.l. then NY_ U, e¥ (N LA
(==

i==l

if Xe¢.# and (p¢#, and if the supertopology is symmetrical, then ¥ ()
= "’(‘x).

Note 2. Obviously any ¥ -neighbourhood of a set A¢.# is also a neigh-
bourhood of A in the usual sense (i. e. in the sense of Bourbaki), but the
opposite is not true: ¥"(A) is in general only a part of the collection of all
topological neighbourhoods of A.

A supertopology (.#,¥") on X is called separated provided the following
condition is satisfied :

if A, B¢ # and there exists a U¢¥ (A) with U B~ (), then there exist
Vey (A) and Wey (B) with VI W=Q.

Obviously any separated supertopology is symmetrical.

A supertopology (., ¥) is said to be additive provided it has the property :

/ )
A CH, U ¥ (A), i=1,2, .., k and it U A€ then US U e¥ (UR,A).
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One readily sees that any symmetrical supertopology of the sort (2(X), ¥")
is additve.

In the class of all supertopologies on a given set X an order can be in-
troduced in the following manner: (.#,, ¥ ,)=(.#,, ¥;) provided .#,—.#, and
¥ (A)D¥75(A) for each A¢A,.

One verifies right away that in the corresponding cases this order is no
other but the usual order in the class of the topologies, respectively the pro-
ximities, on the set X.

Also the following definition seems quite natural. [f we are given two
supertopological spaces X and Y — the first one with the supertopology
(M ., ¥ x), the second with (#y, ¥°))—a mapping f: X —VY is called conti-
nuous with respect to these supertopologies provided that: a) f(M y)=.#y;
b) for any A¢.#, and any V¢ ¥ (f(A)) there exists a U¢¥ y(A)with f(U)=V.

Clearly this concept of continuity also coincides in the corresponding
cases with the usual notions of topological, respectively proximal, continuity.

Finally if (#,¥") is a supertopology on a set X and if AcJX, then a
supertopology (# 4 ¥ 4) on A is defined by #,={B=A|B¢#} and ¥ 4(B)
={UNA Ue¢¥ (B)} for Be.#, We say the supertopology (M, ¥ ,) is in-
duced by (#,¥") on A.

2. Compactly determined extensions. An extension (Y, ¢) of a topolo-
gical space X is called compactly determined extension of X provided for
any y¢Y there exists such a set A= X that y¢o(A) and ¢(A) is compact.

Clearly all locally compact extensions, in particular the compactifications,
as well as all metrizable, and — more generally — all first-countable extensions
of a space X are its compactly determined extensions.

The main purpose of this section is to show that the compactly deter-
mined Hausdorff extensions of a given topological space X are closely con-
nected with a class of supertopologies on X which we call b-supertopologies.

2.1. A supertopology (#,¥%") on a space X is called b-supertopology
provided it is separated, additive and satisfies the condition:

(i) if A¢# an dB<= A, then B¢ .#.

Let us remark that in the case X¢.# any b-supertopology (#,%") on X
is, as one readily sees, nothing but a symmetrical supertopology of the sort
(9()\8. ¥7), i. e. a proximity on X.

n the other hand, on any Hausdorff topological space X a b-supertopo-
logy (#,¥"), compatible with the given topology, is always defined in the
following manner: .# = #(X) U {@}, for each x¢ X the filter ¥ ({x}) coincides
with the filter of the neighbourhoods of the point x in X, and ¥(@)=2(X).
This supertopology is called frivial b-supertopology on X.

From now on in this subsection X will be a given Hausdorff space and
(#,%) will be a given b-supertopology on it which is compatible with its
topology. We will see that this supertopology generates in a standard manner
a compactly determined extension of X.

A non-empty collection & of non-empty subsets of X, belonging to .#,
is said to have. the finite ¥ -intersection property (with respect to the
b-supertopology (%)) provided from /c( o, Uev(A) i=1,2,...,k
(where & is an arbitrary natural number) it follows % U;#+@.

Any collection having the finite ¥ -intersection property is easily seen
to be contained in a maximal one.
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Let X* be the set of all maximal collections in X having the finite ¥ -in-
tersection property with respect to the b-supertopology (4, 7). The elements
of X* will be denoted by &, n, C, etc.

Lemma 1. /f E€ X* and A€E, then B¢§ for any BDA, BEMA.

Proof. The collection & {B} has obviously the finite ¥ -intersection
property and therefore B¢E because of the maximality of the collection E.
Lemma 2. [f E¢X* A¢E and B= A, then either B¢& or AN\ B¢E.

Proof. We can assume that B==) and AN\ B-=(), otherwise the required
assertion is evident. Suppose B¢& and AN\ B¢& Then because of the maxi-
mality of & there exist AJ¢&, U,€¥(4)) (i=1,2,...,k) and U ¢y (B) with
(N UHNU =@, and also A7 €&, U, €¥(A))(j=12...,5)and U’ ¢¥(A\B)
with (N35_,U;)1 U =. Hence (N 0NN u)nWruU)=@. But this
contradicts the finite ¥ -intersection property of the collection & because, in
view of the additivity of the supertopology (4, ¥°), we have U’ U U"”
¢V (A).

(Lemma 3. If £E¢ X* A ,B¢E and V€¥(B), then ANV=+=0Q.

Proof. If AN V=0, then it follows from the separateness of the consi-
dered supertopology that UN W= for some U¢¥(A) and We¢¥y (B), a
contradiction with the finite ¥ -intersection property of the collection &.

Lemma 4. If §¢X*, A, B¢E and V¥ (B), then AV €E.

Proof. Let A”=AN V. Since (AN A)N V= it follows from Lemma 3
that AN A’ ¢E&. Then, by Lemma 2, A’¢&.

Lemma 5. /If E¢X* A,€E and U,e¥(A), i=1,2,...,k then there
exists a Be& with % U, ¥ (B).

Proof. Let A,, A,¢€& U, €¥(A)), U,e¥(A,). By the condition (2) in the
definition of supertopology (Section 1) there exists a V¢ ¥ (A4,) with U, e¢¥(C)
for any CcV, Ce¢.#. Then U, ¢ ¥ (B) for B=A,1 V. On the other hand,
U, ¢¥(B) and therefore U, () Uy€ ¥ (B). Moreover, B¢E by Lemma 4. Thus the
lemma is proved for 2=2. In the general case the assertion is obtained by
mathematical induction.

Lemma 6 /f E¢X* Ac M, A+ Q) and if A¢E, then there exist U¢ ¥ (A),
B¢, Vey(B) with UNV=0Q.

Proof. Since A¢§& it follows from the maximality of the collection &
that there exist U€ ¥ (A), B.€& V,€¥(B)i=1,2,...,k withUN(N%_,V)=0Q.
But by Lemma 5 17 ,V,¢¥(B) for some B¢& Thus the lemma is proved
by letting V=% V.

Now we are ready to introduce a convenient for our purpose topology
on X* For any set I'cc X* let us denote by I' the set of all elements § of X™
possessing the following property:

if A€& and U¢¥(A), then there exist n¢I' and B¢n with U¢ ¥ (B).

Lemma 7. The above defined operator I —~T" is a closure operator.

Proof. One verifies immediately the properties ® - ®, I, T - T, and
it remains to prove the equality

(3) ryr’=royre

for any I, T’ X*. Clearly T'UI"’< I UT". Let us suppose that E¢T"=T",
but E¢I’ and E ¢TI, Then there exist such A’, A" ¢E& U ¢v¥ (A),
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U ¢¥'(A') that U’ ¢¥(B) for any B¢n when nel” and also U ¢ ¥(C)
for any C¢{ when C(¢I”. But by Lemma 5 U’ NU"¢¥ (A) for some
Ac¢&. Considering that £¢I" T one infers that U'NU"¢¥ (D) for some
D¢, where ¢’ T, So U'e¢¥ (D), U"” ¢¥(D) and at the same time either
Ael” or 2eT’” which contradicts the choice of ¢ and U’. Hence I'"T”’
=TI’ T and (3) holds.

From now on in this section X* will be always considered as a topolo-
gical space with topology just introduced on it. This topology can be de-
scribed in another way.

For any open subset U of the space X let

(4) Q,={E€¢ X*|U¢¥(A) for some A€E}.
Lemma 8. For any two open subsets U and V of X

(5) Quav=Q.,NQ,

holds.

Proof. If £€Quny, then U NV E ¥ (A) for some A¢&. Therefore U¢¥ (A)
and V¢¥(A), hence £¢Q; and £¢Q,. So Quniv=Q,NQ,. Conversely, if
£€Q,NQ,, then there exist A, B¢E with U¢¥(A) and V¢¥(B). Then
UNVegy(C) for some CEE and so E€Quny. Hence QN Q,=Qunv. Thus (5)
is proved.

pLet us mention also the obvious equalities Qy=X™* Q,=. (In parti-
cular Q,NQ, =@ whenUN V=0.)

Lemma 9. The collection

(6) {Qu, U is open in X}

is a base for the topology on X*.

Proof. First of all let us see that for any open subset U of X the set
Q, is open in X* Assume £¢X*\ Q,. Then £¢Q, and hence U¢¥(A) for
some A ¢& Suppose L€ X*\Q,, then U¢¥(B) for some B with B¢n and
NEX* N Q;. On the other hand, B¢n and U¢¥(B) imply that n¢Q,, a con-
tradiction. So &¢ X*\ Q. It follows that the set X*\ Q, is closed, i. e., that
Q,, is open.

Next assume that T' is an open subset of X™ and that £¢T. Since & ¢ X*\I'
and therefore £¢ X*\I', there exist such an A¢& and such an open U¢¥(A)
that U¢¥(B) for any Beén when ne X*\ T Clearly £¢Q,, and we will show
that Q,—T. Indeed, if (€Q, then U¢¥(B) for some B¢ Hence {¢ X*\T,
i e. ¢l So Qu T, and thus it is proved that the collection (6) is a base
for the topological space X™.

Note 3. As one can observe, the assumption that the set U is open is
not used in this proof. In fact, the operator €, defined by (4), can be intro-
duced in the same manner for arbitrary (not only open) subsets U of X. How-
ever, one sees (using the fact that for any A¢.# the filter ¥ (4) has a base
of open sets) that in this case the equality Q,=Q, v always holds.

Lemma 10. /f &, &"¢X* and E=§"”, then there exist A’ ¢E', A" ¢E",
U ey (A), U'e¢y (A" with U'NU"=@.

Proof. Since E&'+§", there exists A’¢.# with A'¢E’ and A'¢ & By
Lemma 6 there are A" ¢&”, U’ ¢ ¥'(A"), U ¢ ¥(A”) with U’ N U'=Q.

Corollary. The topological space X* is a Hausdorff space.



274 D. DOITCHINOV

Indeed, under the denotations of Lemma 10, & ¢Qu, &' €¢Qy and
QU' n QU.. = @_
Lemma 11. For any x¢ X the collection

) a(x)={A¢c M| xecU for every Ue¥ (A)}

is an element of the space X*.

Proof. The collection a(x) has obviously the finite ¥ -intersection pro-
perty, and it must be shown that it is a maximal one. Take a C¢.#, C+=Q
with Cé¢a(x). Since C¢a(x), there is a V¢¥(C) with x¢ V. Then by the se-
parateness of the given supertopology there exist U¢ ¥ (x)and W¢¥(C) with
U W=@. Hence the collection a(x)|j{C} has not the finite ¥ -intersection
property. Thus the maximality of the collection a(x) is proved.

According to the last lemma the equality (7) defines a mapping «: X — X*
Now it is easy to get the following result.

Lemma 12. (X* «a) is an extension of the topological space X.

Proof. Obviously the mapping a is one-to-one. Also the equality

C)) o(U)=QyNa(X)

is clearly true for any open Uc X. At the same time the formula (8), in view
of Lemma 9, shows that a is a homeomorphic embedding and that a(X) is
dense in X™.

The extension (X* a) of the space X will be called standardly gene-
rated by the b-supertopology (.#,¥) on X, and the mapping a — standard
embedding of X into X*.

Let us mention also the useful formula Q,=a(U), valid for any open
subset U of X (which follows immediately from (8) and from the density of
a(X) in X™*).

Lemma 13. let E¢X* and A¢ M, A+ D. Then A¢E if and only if
Sea(A).

Proof. Assume A¢E&. Take a B¢E anda U¢¥(B). There exists a V¢ ¥ (B)
with U¢¥(C) for any Cc=V,Ce.#. If A=AV, then Ue¥(A’). Observe
that, by Lemma 3, A'-=Q. If x¢ A’ then A’€a(x) and a(x)¢a(A). Hence
E€a(A). o

Conversely, suppose §¢a(A) and A¢& Then by Lemma 6 there exist
Ue¥(A), Beg, Ve (B) with UNV=@. On the other hand, since &¢a(A),
there exists an x¢ A with V¢¥(C) for some Ce¢€a(x). Hence x¢€ V and then
X€AV=UN V=0, acontradiction which shows that A¢E.

Lemma 14. If X¢.#, then for any open subset U of X

(9) X\ Qu=a(X\U)

holds.

Proof. Let U/ be an open set in X and let §¢ X*\ Q,. Next let us sup-
pose that X\ U ¢E. (X U ¢ # because X¢#) Then there exist B¢ E, Ver(B)
and Wey (X \U) with V| W=(). Therefore Vo X\ WU, so U¢y (B) and
hence &¢€,, a contradiction. It follows that X\ U¢& and then, by Lemma 13,

Eea(X V). —
Conversely, let us suppose that §¢a(X \ ) and E¢ X*\ Q.. Then £¢Q,,
which means that U(Y‘(pB) for some B¢E&. By the definition of the closure
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operator in X™* there exist a point x¢ X\\U and a C¢a(x) with Ue¢¥(C).
Hence x¢ U, a contradiction. Therefore &¢ X*\ Q.. Thus (9) is proved.

Corollary. In the case X¢.# the collection {a(F)|F is closed in X} is
a base for the closed sets in the space X*.

Using a widespread terminology, this corollary can be expressed by say-
ing that if X¢.#, then (X% «) is a strict extension of the space X.

Now we can obtain the following

Lemma 15. In the case X¢.# the space X* is compact.

Proof. Let us suppose that the collectlon {®,|s¢S} consisting of closed
subsets of the space X* has the finite intersection property. For each s¢ S
we have ®,= [1{a(F) Fe¢F ), where #F, is a collection of closed subsets F,
of the space X. Consider the collection # = J{F,|s¢S}. Let Fjr, Fy, ...

S

Fi,Fo FY ... Fiev. o .. Fin,Fr .. ., F.‘; be a finite system of elements of #.
Here s, Sy, ..., S, are p different indices from S and Ffiéf,i for any i and j.

We have n¢ 17_,®, for some n¢X* It follows that n€a(F) and hence Fji¢n

for j=1,2,...,k:i=1,2,..., p. Therefore, if Uji¢¥(F;i), then N{Uji|j=1,
2, ... ki i=1,2,...,p}+=@. Thus we see that the collection # has the fi-
nite ¥ -intersection property. Hence there exists a £¢X* with #F—E&. Since
F¢E for each Fe#, it follows that E¢a(F) for F¢#F. Thus E¢®, for every
s€S and N{®,|s€S}+=D. So the space X™* is compact.

Lemma 16. Let A¢ M, A5 and let (M, ¥V ,) be the b-supertopology
induced on A by (M,¥). If (A% a,) is the standardly generated by (M , ¥ )
extension of the topological space A (considered as a subspace of the space X)
then (A*, a,) and (a(A), al,) are equivalent extensions of A.

Proof. Let us recall (cf. Section 1) that .#,=2(A) and

YAB)={UNA|Ue¥(B)}

for B¢.#, The verification of the fact that (.#,, ¥ ,) is actually a b-superto-
pology on A is immediate.

%f E¢ A* then & is obviously a collection with the finite ¥ -intersection
property in X. Hence §=n for some point n of X*. Clearly A¢n (because
A¢E). Let us suppose that E&=ny, E&n,, where n, n, € X* and n,5n,. Then by
Lemma 10 there exist C,én;, Ci€ng, U, €¥(C,), U, ¥ (Cy), with U, N Uyg= Q.
Take a V,¢¥7(C,) with U,¢¥ (D) for D=V, D¢ .#. Let us see that ANV, ¢€E&.
In order to show this it suffices, according to Lemma 6, to see that if C¢g,
U'ey (C)and We¥ (AN V), then U' N W' @.Wehave U'=UNAW =W A,
where Ue¥(C), We¥ (ANV,). Clearly C¢n, and, by Lemma 4, ANV, ¢en,.
Therefore it follows from Lemma 5 that U We¢¥ (D) for some D¢n,. Then,
by Lemma 3, (UNW)NA+@ or U'N W' =. And so A V,€& On the other
hand, U, ¢ ¥ (AN V,) and hence U,NA¢¥ (AN V,). Analogously one sees that
there exists a Vo€ ¥ (Cy) with ANV,y¢€& and UgNAEY 4,(ANVy). So @
WU,nA)NW AU, n Z/,::@. a contradiction. Thus it is shown that for any
E¢ A* there exists only one point n¢ X* with §&&n. In addition n¢a(A) be-
cause A¢n. o

Thus a mapping A: A* —a(A) is defined by means of the condition
E=A(E). We will show that A is a homeomorphism.
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First of all the inapping A is one-to-one. Indeed, assume that &, &,€ A*
and A(§,)=A(E,), i. e. that §,=n and &,—=n, where n¢X* Suppose & &,
then these are B €&, By€8&,, U, €¥(B,), Use¥(By) with (U, N A)N (U, N A)=D.
But B,, By€n, therefore U, N Uy €¥(C) for some Cé¢n, hence (U, N Uy) N A+@D.
This contradiction shows that & =&, So A is one-to-one.

Passing to the verification of the continuity of A, we will denote by QA
the corresponding to the space A operator, analogous to the defined by (4)
operator Q. In other words,

Qi —{E€ A* | U¢¥ 4(B) for some Bg&}

for every set U=A open in A.

Now assume that £¢ A% n=2A(&) and n¢Q,, where U is an open subset
of X. There exists a Be¢n with Ue¢¥(B). Take a Ve (B) with Ue¥ (C) for
C=V, Ce#, and next a We¢ ¥ (B) with Ve¥ (D) for D=W, D¢.#. As shown
above, W) A¢&. Since Ve¥ (AN W), we have also VN1 A¢¥ (AN W). Hence
E€Qi'na. For any &€ Qi'nathere existsa Ce& with VN A€ # ,(C). AsC=V N A,
it follows U¢¥(C). On the other hand, & <A(&’), hence C¢A(E’) and there-
fore A(&')€€Q,. Thus MO ) =Qu. So the mapping A is continuous and, as the
space A* is compact, A is a homeomorphism.

Further, if x¢A, then ay(x)={Bz=A x¢V for every V¢ ¥ 4(B)}. (Here a,
is, of course, the standard embedding of A into A*.) Therefore, in view of (7),
a,(x) Za(x), hence ay(x)=a(x)=a|4(x), i. e. a|,=2nra,.

Thus, in order to finish the proof of the equivalence of the two consi-
dered extensions of the space A, it remains to see that A(A*)=a(A). But this

is evident because the space A* is compact and A(A*) is dense in a(A).

As a corollary from Lemmas 15 and 16 we obtain

Lemma 17. For any A¢.# the set a(A) is compact.

At last Lemmas 13 and 17 give us

Lemma 18. (X* a) is a compactly determined extension of the space X.

Thus we have proved

Proposition 1. Any b-supertopology which is compatible with the
given topology on a Hausdorff space X generates (in a standard manner)
a compactly determined extension (X*, a) of X.

In the sequel we will say that a b-supertopology (.#,¥") on a space X
generates the extension (Y, ¢) of X provided this extension is equivalent to
the standardly gencrated by (#,¥") extension (X™ a) of X.

2.2. Now we will see that, at least in case of regular spaces, the method
for construction of compactly determined extensions given in the preceding
subsection in universal. (Regular and completely regular spaces are always sup-
posed to be 7',-spaces.)

At first let us observe that on any regular space X a b-supertopology
(#,¥), compatible with its topology, can be defined in the following manner :
M is the collection of all sets Ac X whose closure A is compat, and for any

A¢ # the filter ¥(A) consists of all U=X with Int U=A. This supertopology
is called the standard b-supertopology on the regular space .X.

Next, when (Y, ¢) is an extension of the space X and when a supertopo-
logy (#,% ) on Y is given, we will speak (identifying X with ¢(.X')) about
the supertopology induced on X by (#,¥").
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Proposition 2. Let (Y, 0) bearegular compactly deternined extension
of a given (regular) space X. Then the b-supertopology (M*, ¥*) induced
on X by the standard b-supertopology on Y generates (Y, ).

Proof. We have

(10) M¥*={A=X|0o(A) is compact }
and, for any A¢.#*,
(11) y*A)={Uc= X | U=~ U*), U*<Y, Int U*>0(A)}.

We can assume, for crmvegience, that XV and that ¢ is the identical
embedding. We will denote by A the closure in ¥ of a set AcY, also in the
case when A is a subset of X. Then #*= {ACX|/T is compact } and
¥HA)={U=X|U=U*NX, U*<Y, IntU*>A} for A¢.#* It must be shown
that the extension (Y, ) is equivalent to the standardly generated by (.#* ¥™*)
extension of X.

For any y¢VY let

(12) My)={Aes*|yc A}

Evidently A(y) is a non-empty collection of sets with the finite ¥ *-intersec-
tion property in X. Therefore A(y)=n for some n¢X™*. Let us see that in
fact A(y)=n. Indeed, suppose that there exists a B=X with B¢n and B¢ A(y).
Since y¢ B, there exist open sets U* and V* in Y with y¢U* B<=V* and
U*N Vv*=@. Take a set A¢A(y). Then ye AN U*=ANU* which means that
ANnU*eMy) and therefore AN U*¢n. On the other hand, V*N X¢¥™(B) and
consequently @+(ANUHN(V*NX)=U*NV*=, a contradiction. Hence
A y)=n. .

Thus the equality (12) defines a mapping A: Y'—X* Clearly, in view of
(7), Mx)=a(x) for any x€X.

Let us show that the mapping A is a homeomorphism. It is clear that A
is one-to-one: this follows immediately from the regularity of Y. In order to
establish the continuity of A, take a point y,€¢Y and assume that MY, €Qy,
where U/ is an open set in X. Then U¢¥#™*(A) for some A€M y,). This means
that U —U*n X, where U* is an open set in ¥ and U*>A3)y, Now take a
point y¢U* There exists an open subset V* of Y with yeV* and V*cU.
For any B¢My) we have y€¢BNV*<BNV* hence BNV*EMy). On the
other hand, (*>B>V* so that U¢¥™*(BN V*) and consequently A(y)€Q,
Thus MU*)=€Q,, which proves the continuity of A.

Next, A is a mapping onto. Indeed, take a point ne¢ X™ If A¢n, then

n € a(A) = A(A). But A(A) is compact and therefore MA)=AA)=MA)=MA).
Thus MA)=MA) and hence y¢A(A). It follows that X*=MY").

Finally, let us see that the inverse mapping A™": X*—Y is continuous.
Take a point n € X*. Let n°=A(y,). where yo€VY, and let U* be an open
neighbourhood of y, in Y. In view of the regularity of the space Y_we can
assume (/* =Int (J*. There exists an open set V*in ¥ with y, ¢ V* and V*< U™
If A¢n, then v, ¢ A Hence y,€AN *—ANV* and so A V*¢n, Since U*

SAV* we have Ue¥™* (AN V*) for U=U*NX and therefore ny€Q, We
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will show that Q,=A(U*). Indeed, let n€Q, and let n=A(y), where y¢VY
There exists a B¢n with U¢¥*(B). Then U=U*N X, where U* is open in 4

and W*>B¢y. But, in view of the density of X in Y,
W*=W*NX=U=U*NX=U*

Therefore W*—Int W*=Int U* = U*, and consequently y¢€ U*. Thus Q,=MU¥),

hence A—1(Q,)—=U* So A~! is continuous and this completes the proof of the

eproposition.

The b-supertopology (.#* ¥*) defined by the equalities (10) and (11)
will be called canonically connected with the regular compactly determined
extension (¥, 9) of X. In general it is'not the only one that generates this
extension. Nevertheless, among the b-supertopologies generating (Y, o) the
canonically connected one plays a special role.

Proposition 3. Let X be a regular space, (Y, 9) be a given regular
compactly determined extension of X, and (M*, ¥*) be the b-supertopology
canonically connected with (Y,9). If (M',¥") be another b-supertopology
on X generating the extension (Y, ), then: a) .#'—.#*;b) ¥'(A)=¥"*(A)
for each A¢.MA'.

Proof. The extensions of X standardly generated by (.#* ¥™*) and
(.#', %) will be denoted by (X* a) and (X', a’), respectively. According to
the assumption these two extensions are equivalent to each other. This means
that there exists a homeomorphism A: X’ — X* with A(X")=X™* and Aa"=a.

On the other hand, by virtue of the equivalence between the extensions
(Y, o) and (X* a) of X,

M*={Ac= X |a(A) is compact}

nd, for any A¢.#*, S
YHA)={U= X |U=a"Y(U*), U*<X*, IntU*>a(A)}

For A¢.#’' the set a’(A) is compact, hence the set A(a’(A)) is compact,
too. Therefore, since A= X,

a(A) = ra'(A)=Ma'(A)) = Ma'(A) = Aa'(A) = a(A),
and so
(13) a(A)=r(a'(A)).

Thus the set a(A) is compact, hence A¢.#* So M’ .H*.
Now let A¢.#' and U¢¥'(A). For every E€a(A) there is a point n¢ X’

with £ -A(n). According to (13) né¢a’(A) and consequently A¢mn. Therefore
n€Q,. (The definition of the operator Q" is clear without explanation.) Thus

a(A)=MQ,).
On the other hand, A(Q) is open in X* and
a (M) o N(Q,) - U.
Hence U¢ ¥ ™*(A). So ¥'(A)-¥*(A).
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Conversely, let A¢.#’ and U¢¥™*(A). We can assume that U=a"}(U*),
where U* is an open subset ot X* and U*>a(A). If U’ =A"1(U¥), then, by (13)

@ (A)=2—*(a(A) =AU =U".

For every n¢a’(A) take an open set W’ in X with n¢ Qy, cU’. Then W’ ¢¥7'(B),
for some B¢n and we can choose an open set W in X in such a manner
that W’ ¢¥”(B), and therefore n¢Qu-, and that W ¢¥”'(C) for any C<=W”,

C¢.#'. Then, in view of the compactness of a’(4) there exist in X finitely
many open sets W, W, ..., W, and W, W,,..., W, such that

k
«(A)= U Qg
i=1 i
Q"V‘cU’ and W, €¥”(C) for any C W, Ce#'(i=1,2,...,k). Then
k > k
A= UoT@w)=U Wy

and consequently A=U4_(ANW,). But We¥'(ANW,) for i=1,2,..., k&
and, because of the additivity of the supertopology, one concludes that
UL ,W,€¥(A). On the other hand,

U= i(Un)=a MUY =0~ W)= (U @)= Uo7 @)=0 W

Hence U¢¥”’(A). Thus ¥ *A)=¥"’(A) and finally ¥*(A)=7"(A).

Propositions 1, 2 and 3 yield the following result.

Theorem 1. Any b-supertopology on a Hausdorff space which is com-
patible with the topology on X generates (in a standard manner) a com-
pactly determined extension of X. When X is regular, then, conversely, any of
its regular compactly determined extension is generated by some b-superto-
pology on X. Among the b-supertopologies on X generating a given regular
compactly determined extension (Y, @) of X there exists one (M*, V™) with
the following property : if the b-supertopology (M, ¥") on X generates (Y, o),
then M —.#* and ¥V (A)=¥"*(A) for each A¢c A.

In conclusion let us note that, as it follows from Proposition 2, the stan-
dard b-supertopology on a regular space X generates the trivial extension
of X.

On the other hand, as noted, the notion of proximity on a space X coin-
cides in reality with the notion of b-supertopology provided that X¢.#. There-
fore Lemma 15 and Proposition 2 yield immediately the following famous
result.

Theorem (Yu. M. Smirnov [10]). There exists a one-to-one corres-
pondence between the class of all (Hausdorff) compactifications of a Ty-
chonoff }pacv X and the class of all compatible with its topology proximi-
ties on X.

2.3. The question arises to characterize those b-supertopologies on a given
(regular) space X which generate (in the standard manner) regular extensions
of X. For this purpose we give the following definition.
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A supertopology (.#,¥") on a set .X is called strictly separated if it sa-
tisfies the condition:

for any A¢.# and any U¢ ¥ (A) there exists a V¢¥7(A) such that from
B¢ # and BN U= it follows W V= forsome W¢¥(B).

Clearly any strictly separated supertopology is separated.

It is not difficult to establish the following statement announced here
without proof.

Proposition 4. Let X be a regular space and let (#,¥") be a b-su-
pertopology on X compatible with its topology. The compactly determined
extension of X generated by (M#,¥") is regular if and only if the superto-
pology (M,¥") is strictly separated.

2.4. In the class of extensions of a given topological space one usually
introduces an order in the following quite natural way.

Let (Y, 9,) and (Y, ¢,) be two extensions of the topological space X.
Then (Y, ¢,) (Y, @,), provided there exists a continuous mapping 2: Y, —V,
with Ao, = ,.

It is clear that thereby an order-relation is defined and that the exten-
sions (¥, 0,) and (Y5, @,), supposed to be Hausdorff, are equivalent to each
other if and only if (¥, @,) =(Y, ¢,) and (Y,, ¢,) =(Y,, ¢,) simultaneously.

The just defined order, considered in the class of the regular compactly
determined extensions of a space X turns out to be closely connected with
the order in the class of supertopologies on X (defined in Section 1).

Proposition 5. Let X be a regilar space and let (H,, ¥ ) and
(Mo, V) be two b-supertopologies on X generating the extensions (Y, ¢,)
and (Y, ¢y), respectively. If (M, ¥ ) ~(My, ¥7), then (Y, 0,)>=(Y, 0,).

Proof. We identify the extensions (},9,) and (Y, ¢,) of X with the
standardly generated ones by (.#,, ¥",) and (.#, ¥7,), respectively, costructed
by means of the method from subsection 2.1 (so that, in particular, ¢, and @,
are the corresponding standard embedding).

Suppose (M, ¥",) (M, ¥,). This means that .#, .4, and ¥",(A) ¥ "(A)
for any A¢.#, let E¢VY, Then & is a maximal system (conisting of non-
empty sets belonging to .#,) with the finite ¥ -intersection property. Clearly §
is also a system with finite ¥ ,-intersection property. Therefore there exists
a point n¢ Y, with £=n. Thereby the point n is uniquely determined. In order
to show this, let us see that the following auxiliary statement is true:

(14) if E€YunéeYy, E=n and A€E, Ben, VeV y(B), then AN V¢E.

Indeed, if AN V¢E then, by Lemma 2, A" =AN (AN V)€E Therefore A’ ¢n
and from Ben and V€ ¥ ,(B) it follows by lLemma 3 that A’V ~@, a con-
tradiction.

Now let us suppose that E¢ VY, 5o ny, & ny where n,. ny€ Yy and that
N, | no Then there exist By € ny, By €, V€ 975(B)), V€974 By) with V(1 V- Q.
For i=1,2 take W, ¢ #4(B) with V,¢¥4C) for any C—- W, C¢ . #y 1f A CE.
it follows from (14) that A, N W, €& and A, W€l But V,e¢¥ (AN W,)),
Vo€ ¥4 AN W,). hence Vi€9,(A, (1 W), Vye¥ (A, W,), and conscquently
V.V, £@. The so achieved contradiction shows that for any £¢ Y, there
exists a unique n¢ Y, with §=n. This allows to define a mapping A: ¥V, — VY,
by means of the condition EcAME) for 5¢ V.. Clearly Ao, = @, It remains to
establish the continuity of A.
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Take a point £¢Y;. Let A(§)=n and n¢Q}, where U is an open set in X.
(We use the denotations Q! and Q2 defined in an obvious manner.) There
exists an open set V' in X with n¢Q? and Q—{,CQQL.. Next, take a B¢n with
Vey(B) and a We¥o(B) with V¥ y(C) for any C=W,Ce.#, 1f now
A €E, then A, W& by (14). On the other hand, V¢¥5(A,N W) and there-
fore V¥ (A, W), hence £€Q,. We will see that A(Q})=Qj.

Indeed, for any &' €Q}, one can take a B’'¢&’ with V¢ ¥ (B). If ME)=n',
then E’—w’, hence B’¢n’ and therefore, by Lemma 13, n’ € 94(B)=0,(V) =2,
<Q}. So we obtain ,(Q})=Qj, which shows that the mapping 2 is continuous.
Thus it is proved that (Y, 0,)=(Y,, ¢.).

Proposition 6. Let (Y,,¢,) and (Y, ¢,) be two regular compactly
determined extensions of a (regular) space X and let(#,,¥",) and (M, ¥),
respectively, be the b-supertopologies on X canonically connected with them.
If (Yy, @) =(Ya, 0), then (My, 7" \)=(My ¥75).

Proof. We again identify (Y;, ¢,) and (Y, 9,) with the extensions of X
standardly generated by (.#,, ¥";) and (.#,, ¥7,), respectively.

Suppose (Y, ;) =(Ys, ¢,). Then there exists a continuous mapping A: V=V,

with Ao, =@,. Take a set A¢.#,. The set ¢,(A) is compact, hence A(@,(4) is
compact, too. Therefore

Mey(A)) = M@, (A) DM@1(A) = 95( A).
It follows that the set @,(A) is compact, hence A¢.#, Thus #,= .#,.

Next, let A¢.#, and U¢ ¥ ,(A). We can assume that U is an open set
in X and that U=o;'(U3), where U, is open in Y, and U;2@4(A). For the
set ;=AY U3) which is open in Y, we have o7 (Ur) =01 AU =93 '(Ua)
—U and U;=A"YU3s)=r Yoy(A) =~ 9, (A)=0,(A), hence U, ¢¥,(A). So
¥ o(A)= ¥ (A). Thus it is proved that (.#,, ¥ ))=(#My ¥ ).

From Propositions 5 and 6 we, of course, get right away the well-known
result [10] that the one-to-one correspondence between the compactifications
of a space X and the proximities on it is an order-isomorphism.

2.5. The notion of supertopology turns out to be useful in the question
of extension of continuous mappings. One establishes without difficulties

Proposition 7. Let X and Y be regular spaces. The mapping f: X—Y
is continuous if and only if it is continuous with respect to the standard
b-supertopologies on X and Y.

The main result here is the following

Theorem 2. Let X and Y be regular spaces, (X* ay) and (Y¥*, ay),
respectively, be their regular compactly determined extensﬁms. Then the
continuous mapping f: X—Y can be extended (evidently in a unique manner)
to a continuous mapping f*: X*—Y* (in the sense that f*ax=a,f) if and
only if f is continuous with respect to the b-supertopologies (M x, ¥ x) and
(M, ¥ ) canonically connected with the extensions (X™*, ay) and (f‘. ay).

Proof. If f possesses a continuous extension f*: X*—Y*, then by Pro-
position 7 the mapping f* is continuous with respect to the standard b-super-
topologies on .X* and Y*. Therefore f (as restriction of f* to X) is conti-
nuous with respect to the b-supertopologies (#y, ¥'y) and (4, ¥7)).

Now suppose, coversely, that f is continuous with respect to the super-
topologies (.# , ¥°,) and (.#,, ¥'y). We can assume that the extensions (X*, ay)
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and (Y* a,) are just the standardly generated ones by (#y, ¥ x) and (#y, ¥7y),
respectively (and, in particular, that ay and a, are the corresponding standard
embeddings). For any Z¢X* consider the collection f(&)={f(A)| A¢&}. Clearly
it has the finite ¥ ,-intersection property. Indeed, if A;€&, V., €¥ W f(A)) for
i=1,2, ...,k then there exist U,€¥ yx(A,) with AU)=V;(i=1,2,...,k).
Therefore

lél ‘/‘ Dl’élf( U‘) Df(irjl U'):*:@.

So f(&)=n for some n¢Y* We will see that thereby n is uniquely de-
termined. Suppose f(£§)—=mn, and f(£)<n, where my, ng€¥Y* and ny=En,. Then
there exist B, ¢n,, By€ne Vi€¥ WB,), Vi € ¥ y(By) with VN Vo=. Fori=1,2
take W, ¢¥ (B,) with V,¢¥ (C)for CcW,, CeMy. Let ACE. 1T AN fH(W)) ¢E,
then AN_f{(W,) €&, hence fIAN_f~YW)))€f(§). It follows f(A)\ W, €n, because
FAN W, (AN f(W,)). Therefore (f(A)N\ W) W, == which is impossible.
Hence AN f~(W))€&. On the other hand, V,¢¥ ( f(A) W)) and flAN f~1(W)))
—f(A) N W, hence fY(V,)€¥ x(ANfY(W))). Analogously A f~Y(W;)€& and
UV EY (AN f7I(W)). Therefore @<= f~X V)N f~Y(Vy)= (VN Va)=.
This contradiction shows that the inclusion f(£)—n determines n. Consequently
the condition f(£)—f*&) defines a mapping f*: X*~Y* One sees immediately
that

(15) SHax(x0) = a (f(x))

for any x¢X. Indeed, recall that ay(x)={A¢.# | UIx for every Ue¥ x(A)}.
For Atay(x) and Ve¥ ,( f(A)) we have [ '(V)€¥ x(A), hence x¢f (V) and
f(x)€ V. Therefore f(A)€ay(f(x)), hence fluy(x))=ay(f(x)). This shows that
(15) holds.

Let us see that f* is continuous. Using the selfexplaining denotations QX
and QY, suppose that &¢ X* f*&)=n and n¢Q), where V is an open set in Y.
Take an open V, =Y with n¢QY and Q. QY. There exist B¢ n with V; €4 (B)
and W¢ ¥ (B) with V, ¢¥ (C) for any Cc-W,C¢.#,. Let A¢L. Reasoning as
above, one concludes that AN f Y W)€E, f(A) N Wen and V€ ¥ yv(f(A)N W),
hence U =f YV ,)€¥ (AN f~(W)). Therefore £¢ QY. Now take a §, ¢ Q. Then

Ue¥ (D) for some D¢E,. Since f(D)ef*(§,), we infer that f*(&,)€ ay(f(D))
“a (V) =QY =Qp. So fHQF)=Q[. This shows that f* is continuous.

Evidently the above proved theorem yields the well-known result [10]
about the extendibility of continuous mappings on compactifications.

3. Locally compact extensions. The results from Section 2 allow a great
simplification when one considers the important class of locally compact ex-
tensions. (The results of this section were proved first by another method
[3; 5] in collaboration with G. Dimov.)

he locally compact extensions of a topological space were described by
lLeader [9) on the basis of the notion of local proximity space introduced
by himself. However the description of these extensions proposed here seems
to be simpler and having a proper importance.

In this section X will be always a Tychonoff space. A supertopology
(#,v) on X is called le-supertopology provided it is symmetrical and the

following conditions are fulfilled :
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(i) if A¢.# and B A, then B¢ 4,

(ii) if A, Be#, then AU B¢ #;

(iii) for any A¢.# there exists a U¢ ¥ (A) with Ue¢ 4.

A trivial example of /c-supertopology is any symmetrical supertopology
of the sort (2(X), %), i. e. any proximity on X. Obviously this is the case
whenever a Ilc-supertopology (#,¥") on X is such that X¢.#.

On the other hand, when the space X is locally compact, one easily ve-
rifies that the standard b-supertopology on X (when X is considered as re-
gular space) is a [c-supertopology. Therefore we can speak about the stan-
dard lc-supertopology on a given locally compact space.

Lemma 19. Any lc-supertopology (M,¥") on a space X is a b-super-
topology.

Proof. It must be shown that the supertopology (.#,¥") is separated
and additive. Let A, B¢#, Uc¢¥ (A) and BNU=. Take a V¢¥(A) with
U¢y(C) for any C=V,C¢.#. By the condition (iii) there exists a U,€ ¥(A4)
with U,¢.#. Then U¢¥ (U, N V). By virtue of the symmetry of the superto-
pology («,¥") it follows from BNU=@ that WnN(U,N V)= for some
W ¢¥7(B). Since U, V€¥(A), thus itis shown that the supertopology (.#,¥ )
is separated.

In order to establish the additivity of (.#,¥") it suffices to see that
AL Age M, U € ¥ (Ay), Ug€ ¥ (Ag) imply U, U Uy € ¥(A, L Ay).Take a Up€ ¥ (A, U Ay)
with U,e#. If U'=U, U, and U"=U,NU,, then U €¢¥(A,) and U" € ¥(A,).
Let B,=U>U’, By=U\U". Since By¢.# and U’ B,=(, there exists a
V'e¥(B,) with V' 1 A,= (). Analogously V"' 1 A,=@ for some V' ¢¥(By).
For V=V’ V" we have V¢¥ (B, N B,) and VN (A, ) Ay)= . Therefore there
exists a Ue¥ (A, UA,) with UN(B, N By)=@. Then for U*=U,N U we have
U*¢¥ (A, 1) Ay), U*< U, and U*N (B,N By)= . Hence

U*cUp\(B, N By)=U" U U"<U, U Uy,

and consequently U, UU,€¥ (A, ) Ay). So the supertopology (., ¥") is addi-
tive.

Now we get immediately

Lemma 20. Any lc-supertopology (M,¥") on X which is compatible
with the topology on X generates (in the standard manner for b-supertopo-
logies) a locally compact extension (X*, a) of X.

Proof. Indeed, let £¢ X* and A¢&. Take an open U¢¥ (A) with U¢ 4.
Then U¢E and £€9Q,, i. e. Qp is a neighbourhood of § in X™ At the same
time by Lemma 17 the set Q,=a(l/) is compact.

When (Y, ¢) is a locally compact (and therefore compactly determined)
extension of the space X, then, as it is easily seen, the b-supertopology (.#*, ¥'*)
canonically connected with (Y, @) (defined by means of (10) and (11)) is a
lc-supertopology on X. Therefore we can speak of the Ilc-supertopo-
logy on X canonically connected with alocally compact ex-
tension of .X. We will see that it is in fact the unique /c-supertopology on X
generating (Y, @).

Lemma 21. Let (Y,¢) be a locally compact extension of the space X
and let (M*, ¥*) be the lc-supertopology on X canonically connected with
(Y, ). Then any lc-supertopology (#,¥") on X generating (Y, ¢) coincides
with ((#*, ™).
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Proof. Let (.#, %) be a [lc-supertopology which is compatible with the
topology on X and which (considered as a &-supertopology) generates (Y, @).
This means that the standardly generated by (.#,¥") extension (X* a) of X
is equivalent to (Y, ).

From Proposition 3 we know that .#—.#* Take an A¢.#*. Every point
of the compact set wA) has a ncighbourhood of the form €, where U is
an open set in X and U¢.#. Therefore there cxist finitely many open sets
U,U,...,U, in X such that U,¢ #(i=1,2,..., k) and

o &
a(A)= .Ul Q(,", .
Then

k k
A=a oAM= U a Qo) = U U

But % U, ¢.# because of the condition (ii). So A¢.#. Thus .# =.4*. By
virtue of Proposition 3 we now get (., ¥")=(.M* ¥v'*).

The last two lemmas, together with Propositions 2, 5 and 6 give us the
following result.

Theorem 3. There exists a one-to-onz correspondence between the
class of all locally compact extensions of a Tychonoff space X (defined
up to equivalence) and the class of al!l (conpatible with the topology on X)
le-supertopologies on X. This correspondence is an order-isomorphism with
respect to the usual orders in these classes.

Remark 2. One can observe certain relations between some of the no-
tions introduced in this paper anl scveral concepts from the theory of near-
ness structure in the sense of H. Herrlich [8; 1]. So the systems having
the finite ¥ -intersection property with respect to a given b-supertopology (.#,¥")
on a space X in the case X¢.#, i. e. in the case .#-—-2(X), form a special
nearness structure on X, and the maximal systems of this kind are then the
clusters. Therefore in the case X¢.# Theorem 1 (which in this casc is in fact
the theorem of Smirnov) can be obtained also by means of the results from
[8], provided it is shown (which is not difficult) that the introduced here
(in section 2) topology on the space X™* coincides with the topology intro-
duced in [8] on the same space considered as a set of clusters.

On the other hand, one can now see that a nearness structure on a
space X is induced by a compactification of X if and only if it is induced
by some (compatible with the topology on X') b-supertopology of the sort
(A(X), ?) in the following sense: a collection of subsets of X is near pro-
vided it has the finite #7-interscction property with respect to this b-super-
topology. N _

Further. as follows from Theorem 3, a nearness structure on a space X
is induced by a locally compact extension of X if and only if it is induced
by some (compatible with the given topology) [c-supertoplogy (.4, ¥’) on X
in the following sense: a collection of subsets of X is ncar provided it core-
fines a collection having the finite ¥ -interscction property with respect to
(#,%). (A collection of corefines the collection # when for each A¢ o there
exists a BeA with 5 -A) It is to be noted that a direct proof of the fact
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that thereby in reality a nearness structure on X is defined seems to be dif-
ficult.

4. Cech-complete extensions. As a Cech-complete extension of a space X
is, in a sense, an intersection of a countable collection of locally compact
extensions of X, it is clear that such an extension can be determined by
means of a countable sequence of Ilc-supertopologies on X. Different sequences
of this sort, of course, can in general yield the same extension. But the case
is relatively simple when this extension is compactly determined.

Here some results about Cech-complete extensions are announced whose
proofs can be let to the reader.

First of all a sequence {(#,,¥",)|n=1,2,...} of lc-supertopologies on A
will be called Cech sequence provided : a) M, ., forn=1,2,...; b) ¥ ,(4)
=¥"\(A) for Ac.#H, n=2,3,....

Any Cech sequence {(4, ¥,)/n=12,...} induces a Cech-com-
plete extension of X in the following manner. Let (Y, a,) be the locally
compact extension of X corresponding to (4, ¥ ,). One can assume, up to
homeomorphism, that X<V, =V, (n=1,2,...). If now Y=Nz,Y, and

n=1"n
¢: X—Y is the identical embedding, then (Y, ¢) is a Cech-complete exten-
sion of X.
Proposition 8. Let X be a Tychonoff space. An extension of X is
Cech-complete if and only if it is induced by some Cech sequence of lc-su-

pertopologies on X. If a Cech-complete extension (Y,9) of X is compactly
determined and if (#,¥") is the b-supertopology canonically connected with
it, then for any Cech sequence {(M, ¥ ) n=1,2,...} inducing (Y.9) the
following holds: N> M,=H and V| 4=7".

The situation is simpler in the case when all Cech-complete extensions
of a space X are compactly determined. That this case can actually happen is
seen by the following

Proposition 9. If X is a pseudocompact space, then any of its Cech-
complete extension is a compactly determined extension of X.

This Proposition can be established by means of the following result
(cf. 7, p. 270)): if a dense subspace X of a compact space Y is pseudocom-
pact, Y\ X does not contain non-empty Gg-subsets of Y.

Next, a supertopology (.#, ¥") on a space X is called &-lc-supertopology
provided there exists some Cech sequence {(#,, ¥,)|n=1,2,...} of lc-super-
topologies on X with N> .#,=.# and ¥, | g=7"

Theorem 4. Let X be a Tychonoff space such that all its Cech-com-
plete extensions are compactly determined. There exists a one-to-one corres-
pondence (which moreover is an order-isomorphism) between the class of
all Cech-complete extensions of X (defined up to equivalence) and the class
of all (compatible with the given topology) 8-lc-supertopologies on X. The
8-lc-supertopology corresponding to a given Cech-complete extension (Y, o)
?}f’ X coincides with_the b-supertopology on X canonically connected with

' 9).
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