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AN EXACT ESTIMATE OF THE APPROXIMATION
OF THE FUNCTION X¢ WITH
BERNSTEIN POLYNOMIALS IN HAUSDORFF METRIC

V. A. KOSTOVA

In the paper an estimate is obtained for the approximation of the function
f(x)=x9 0<=x<, O<a<l

with Bernstein polynomials
B - E x n — k
w(f; %) k=0f('") g ) (=2

in the Hausdorff metric.
It is proved that the estimate is exact to the order n—1! In'—¢ n.

[n the paper an estimate is obtained for the approximation of the function
flx)=x2 0- x—1, 0<a<! with Bernstein polynomials in the Hausdorff metric.
[t is proved that the estimate is exact to the order n~'.In'"“n.

We shall use the notation

Bu(fi )~ BA(x)= E f(5) pan ().

where ,,(x) —(:)x*(l —x)"* — the Bernstein polynomial for f; according to [3]
r(A; f, g—max {max minp (A, B), max min p (4, B)},
Afs Beg A¢g Bt/

where p(A, B)=p(A(x,, y\), B(xXy, ¥g))=max{| x;—xX,|, | ¥,—Va|}, defines the
Hausdorff distance between the functions f, g€ Ca.
It is known [4] that for the function f(x)—x9 0<x=1, 0<a<| one has

(1 max {| f(x)—B,(f; x) |, x€[0, 1]}=0((1—a)n~v).
We prove

1
Theorem. /f m = exp(2u*") for the function f(x) - x¢, 0= x=1, 0<a<1
one gets

r([0,1]; B,(f) )=0(1—a)n*.In'~ap),

Proof. After some elementary transformations we obtain
k-1 k —1
(2) B (0)-By(x) - A" fG) GO+ 4 f G DI P ()
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It follows from (2) that for the function f(x)=x< one has

L e 1 1
(3) Bi— 1 (x)— By (x) = —vil kk—1)% {‘P(v)“‘P (?)}ka (x),
where ¢ (x)=[1 —(1—x)*].x 1
1. For n7'in n==x=1 we shall prove that if

| 1
k =n = exp{2a°'};

N lf;-g_vgk.

then

(5) ve (o (D—o@BN=a {5 (1—0 (1)
For this purpose we use the inequality

(6) 2—a)¥'—e—(1—a)92—<=1, 9¢[0, 1].

It is obviously true as the function on the left hand side is increasing on
[0, 1] and reaches its maximal value for 8=1. We set 8=1—u, O<u=1 and
from (6) we get

(7) 1 —(l—u)pr<=au+(l —a)ul.
If
®) 1=a[ge] ue,

then (7) gives
In &

o(u)<a +q(l—u)[7e?]‘—“ ue, which is equivalent to

©) (1—a)[1 —a (125 y—eue) <1 —0 (u).

According to the definition @ is increasing on [0, 1]. Therefore the function
1—o@(¢) is decreasing on [0, 1] and for x¢[0, 1] one has

(10) l—9p(x)=1—a

From (9) and (10) we obtain [l—dp(t)][l—a(l:—:-)‘—" uc)<1—o(u) or

(1) o) —e@B)=a(pr)—eus(1—o (1)

It is easy to see that (11) yields (5) with the substitution ¢—1/k, u=1/v, if
the condition (8) is satisfied. But this proves (5) as the inequality (8) is true
under the restrictions (4).

Using similar considerations we prove [4] that for 1 svsk—1 one gets

(12) vilo(h)—e(}s1—a
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Further we express (3) as follows

1 1 1
BBt (V=300 it W) 7O G ()
1 1 1
- > {9 ()= (Z)}Pvi (%),
k(R—1)" | x—v/k|>25(x, k)v {(P(v) (P(k)}[’ k(x)

where 3 (x, k)__-\/"“_’;‘f)ﬂ‘fk,
From (5) and (12) holds

1—a _
L b Py ().

(13) By () =B (x)=2a(1—0) Tk(k—1) k(B—1)* | x—v/k|>25(x, &)

According to [1]
> P (x)=2/k.
| x—v/k|>25(x, k)
Then we obtain from (13)

l—-ak 1—

¢ 1 2(1— _
B,,.(x)—B,,,_,(x)\iZ(z(l—a)—k"—(k—_ 20-a _

In a
“cyo(l—a) FGTy X 1
It is known [l] that the sequence of Bernstein polynomials for a continuous
function f converges to f. Therefore

y X+
1) k2 (k—1)

(14) x0—B,(x) = I {By(x)— By (%)}

o (1—a) xo! y % ~coa(l—a)x—'n—'in'—p
= — e~ —a .
! k=n+1 k(k_l) 2

Using the obtained estimate (14) we have

(15) [x—ca(l—a) Jnl;u"—]“-iB,,(x)z\’_xa.

From (15) and the definition of Hausdorff distance for n»~'lnn<x<1 and
1

n—exp(2a+1) one gets r([n'Inn, 1]; B,(f), f)=cs(1—a)n ' In'~pn,

2. For x,€¢[n", n7'Inn|, x,=n'In*~.n, y€[0, 1] we assume that the
Hausdorff distance is 8, =c,(1—a)ntIn'"Bpn, Be[O 1], B>y. (B=7+1 contra-
dict to (1)). Then the definition of Hausdorff distance gives

,‘ ] ) (@13, (a—1)(a—2)s?
By (x,)=(x,—8,)"—8, = x4 —ad,x3~" . [1——; x, Tt ¥ Y

(a—1)(a—2). . .(a—n+1)8"""
L R
n! x5
The series in the break square is convergent and for its sum A, (a) one has
1-A,(a)<1/a.
We obtain
B, (xy) =(x,—6,)“——8,:x‘;—aA,(a)8, x‘;_"‘ﬁy
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or
(16) ad, x21—8,=<x% B, (x,)=8, x¢71—3,.

In view of (1) the values of B and y must satisfy

(17) aA, ()8, xi'=(1—a)ezneIncn=(1—a) csne,

where oc=a(l1—y)+(v—B). It is clear that (17) would be true for c=a

+(1 —a)y—PB=0. Therefore for the Hausdorff distance in the interval [n—1,
n—'lnn| one gets

r([n,n'Inn]; B,(f), H=c;:(1—a)ntInl~en,

3. We prove that the obtained estimate is exact to the order.
For £>n from (3) follows that

1 k—1
B~ Bes (0= Z 0 ()= P (0)=x(1 =0 1= ) ~o(1 =0 ().
Hence

= w u—x)k—‘(l—w(%»

— X)= X —
x=B ()= I (B =By ()=x T ——
2n

=x(1=0C 4 ) e, 2, 1= =10 () [(1—x),— (1 — X2

We set x,=a'/!—¢ -':I"- Then the following will be true:

(18) x2—B, (xa)=(1—0 (%)) [(1—=xa)"—(1—xa)*"] (2n)

=(1—9 (G [(1— 5 —(1— Ly @n)—
>a(l—a)(e'—e ) (2n ) [(nx)Mnn)—e=0 (1 —a) cg(n Int—e n). x21,

From (16) and (18) it follows that the Hausdorff distance in the point x, must
satisfy the inequality

aAq ()8 X&' =80 (l—a)csxt~'ntinn

or 8, c,(1 —a)yntIn'"on.
Thus the theorem is proved.
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