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SOME ESTIMATE, EXISTENCE
AND UNIQUENESS THEOREMS
FOR EVOLUTION EQUATIONS

HENRYK UGOWSKI

We consider the Cauchy problem for a linear evolution equation in a Banach space. There
are derived some estimates concerning a solution and a measure of noncompactness for the
above problem. Next these estimates are applied in proving existence and uniqueness theorems
for some system of semilinear evolution equations in a Banach space. The above existence and
uniqueness theorems involve, as a particular case, a system of integro-differential equations
with functional arguments.

1. Introduction. Let X be a complex Banach space with a norm ||-|. By
([0, t,]; X) we denote the Banach space of all strongly continuous functions
v: [0, {,]—X with the norm

12 llo.a= sup 7|
Stste

CY((0, #,); X) denotes the set consisting of all functions v: (0, Z,]—~X possess-
ing strong derivative ¥’: (0, £,]—X which is strongly continuous in (0, £
Moreover, we shall use the Banach space C®)([0, £,]; X)e€(0, 1) being a con-
stant) consisting of all functions #: [0, £,]—X with finite norm

129 0=l sup {llHO—o(E) ]| t—# |,
t, ¢t €10, 4]
In Section 2 we consider the problem

(1.1) v (t)+AOAt) = f(t), 0<t<t, v(0)=2,

where A(f) are (in general) unbounded linear operators in X, f and v take
values in X, and ©,€ X. We establish some estimates in the space C®([0, 7,]; X)
of a solution of the above problem. Next there is derived some estimate of a
measure of noncompactness in the space C([0, #,]; X) of the set of all solu-
tions of the problem (1.1) when f varies in a bounded set of the space
CEX([0, ¢,]; X) and v, is fixed.

Section 3 deals with the problem
(1.2) v () + A(Ool)=(Bo)i), 0<t=t,
(1.3) v(0)=vy, d=1,..,'N,

where A/f) are linear unbounded operators in X, v, take values in X, B, are
nonlinear operators defined on some class of vector functions v=(v,,..., oy),
and vy, € X are given elements. Using the results of Section 2 an& applying
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8 H. UGOWSKI

some Darbo type fixed point theorem, we prove an existence theorem for the
above problem. Next under assumption different from those of the above exi-
stence theorem, we prove an existence and uniqueness theorem for the pro-
blem (1.2, 1.3) with the aid of the Banach fixed point theorem.

In Section 4 the results of Section 3 are applied to a system of integro-
differential evolution equations with functional arguments. Finally, in Section 5
there are given some examples illustrating Theorem 4.1 of Section 4.

The most important result of this paper is the derivation of a suitable
estimate of the measure of noncompactness concerning the problem (1.1) and
its application in solving the problem (1.2, 1.3). The Cauchy problem of type
(1.2, 1.3) for an infinite system of equations was considered in paper [4].
There were obtained (under assumptions somewhat different from those of this
paper) the results similar to those of Sections 3 and 4 of the present paper.
The main difference consists in the fact that the complete continuity of some ope-
rators, assumed in [4), is now replaced by some conditions imposed on the
measure of noncompactness concerning some other operators. Comparing consi-
derations in the papers in question, we can see that theorems of Sections 3
and 4 of this paper can be extended to an infinite system of equations. In
order to give a relatively simple and general example to Section 4 we rest-
ricted the present paper to a finite system. y

2. The problem (1.1). We shall make use of the following Bielecki's norms

(21 |l e = SUP | €O ]
and
(2:2) || 21 =112 llotels + t,‘s:alg”{[exp(—u max (¢, )] || o(t)—v(t)|[¢—¢ |~}

where p€R is a constant (R being the set of all real numbers). Obviously,
for any p€R the norms ||-/jjosu and |||/}, are equivalent with the norms

||+ lowsro= || - llio, 2 and [} - i) 0=11 - ll{6,»

respectively. Let us put

o f: C‘(D op 5 .
@3) W, €O, o X)
Clearly, the set # is dense in C([0, £]; X).

As in [1] (Sec. 2.3), we introduce the following assumptions concerning
the operators A(f) appearing in the problem (1.1).

(2.) A(t): D~ X, t€|0, ¢, are closed linear operators with a domain D
dense in X.

(211) For any ¢t€[0, £,] the resolvents R(A, A(f)) exist for all A with
ReA=0 and | R(A, A(t)| =K\(|2[+1)"", K, being a positive constant.

(2.111) There are constants K,>0 and a€(0, 1) such that

| [A)—A@IA~YS) || SKa|t—Tl%, £ 7 $E[0, fo)

Moreover, we need the following assumptions.
2IV) feC#([0, ¢)); X) for some €¢(0, 1).
2.V) w©, belongs to the domain of A*(0) for some y¢(0, 1).
(2Vl) Fc # is a bounded set of the space C([0, #y]; X).
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Theorem 2.1. If assumptions (21—2.N) are satisfied, then the pro-
blem (1.1) has a unique solution v¢C([0, ¢,]; X)NCY(O, %,]; X). Moreover,
for any o’ €[0, y) we have

(2.4) A% (0ype C)([0, £,]; X), a"=y—a’

and there is a constant K>0 depending only on K,, K., t,, o' and v, such
that

(2.5 Il A¥ )0 [[{§2) = KW [ f o+ | A7(0)wo )

for any p>0.
Proof. The first assertion is proved in [1] under assumptions (2.I1—2.IV).
The solution v of the problem (1.1) is given by the formula

t
(2.6) o(t)=U(t, 0)v°+of U(t, s)f(s)ds,
where U(£, s) is the fundamental solution of the equation 2'(£)+ A(f)z(£)=0.
Further we proceed like in the proof of Theorem 1 of [4]. Namely, let us put

(27) y(£)=A¥O)U(Z, 0)v,.

Writing y(¢) =[A“(0)A-(6)][A()U(¢, 0)A—7(0))[A"(0)v,] and using (2.1) and in-
equalities (2.14.14) and (2.14.12) of [1], we get

(2.8) 1Y o= K3 || A7(0)z, |-
If 0st<t=t, then the relation

v(t)—y(0) = {A¥(O)[UZ, 0)—U(x, 0)]A-"(0)}{A"(0),]
implies, by inequality (2.14.15) of [1], that

(29) [| e [o(t)—y(7)] || = K(§—1)*" || A (0)w, ||.
Now let us put
(2.10) 2(f)= A*(0) bf ULt, 5)f (s)ds= (f AY VU, ) f(s)ds.

Hence, taking into account (2.1), the estimate
| A* (UL, 1) || s Kt—1), 0st<tst, Osssio
and Holder's inequality, it follows that

(2.11) I 2 [lioutoton = Ko™ || £ [lrotedun.

If 0=st<t=t, then (2.10) and Corollary of [1] (p. 164) imply the inequality
4

(2.12) || e~ [2(8)—2(7)] || = Kr(t—1)*" l[ e !r= || f(s) ||'*~n ds]t~7

= K== || £ lloutapn-
Note that each constant K(i=3,..., 8) depends, at most, on the constants

Ky K, t,, @' and y. Therefore relations (2.6—2.12), (2.2) yield (24) and (2.5),
which completes the proof.
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Let m be the Hausdorff’s measure of noncompactness in X, i. e. m(E)
=inf{r>0:E can be covered by a finite number of balls of radius r} for any
bounded set £— X, This definition and some properties of m can be found,
for instance, in [2]. By M, we denote the Hausdorff’s measure of noncompact-
ness in the space C([0, #,]; X) with respect to the norm

| - |l (m € R being a constant).

Suppose assumptions (2.1—2.1lI) and (2.V) are satisfied and fix arbitrarily
a’€[0, y). Then Theorem 2.1 implies that for any f€.# there exists a unique
solution @ of the problem (1.1) such that A*(0)veCe([0, £5]; X).
Setting Zf—A*(0)v we define on the set #<=C([0, £]:X) an operator taking
values in C@([0, £,]; X)=C([0, ¢,]; X). With the aid of Theorem 2.1 we con-
clude that

(2-13) ‘ Zfl_zf2 :vlﬂ.fo].u'—;: Kw—‘ "fl ‘_fa I‘}lo-ful»u
for any f,, fo¢ # and p>0.

Now suppose additionally that assumption (2.VI) is satisfied. Then it follows
from Lemma 4.4 of [6] and (2.13) that

MAZF)=Kw—"Mu(F), n>0,

where ZF={Zf:f¢F}). Thus we have proved the following theorem.
Theorem 2.2. Let assumptions (21—21ll), (2.V) and (2N1) be satisfied.

Fix arbitrarily o’ €[0, v) and denote by V\*" the set of all functions v(*")

— A¥(0)yv such that v is a solution of the problem (1.1) for some f¢F. Then

for any >0 we have
M (V@)= Kpr ' Mu(F),

K being the constant appearing in Theorem 2.1.

3. The probleme (1.2, 1.3). We need the following assumption.

(3.1) The operators A(¢) (£€[0, f], i=1,..., N) satisfy assumptions (2.I)
— (2.1).

In order to formulate further assumptions we introduce some notation. By
CM[0, £); X) we denote the set of all functions v=(7y, ..., vy), v €C(0, t);
X), i=1,..., N. Providing C\[0, £]; X) with the norm

N
(3.1 ®UE, = ‘E‘ || 7 [[(0.2,)

we get a Banach space. Bielecki’s norms

N
.U = lzl || 2, [0t (HER being a constant)

will be used as well. Obviously, each norm ® - @, is equivalent with
.- I(o,g,],u;:l - oz, -

By C©(0, £,]; X) (€0, 1) being a constant) we denote the set of all func-
tions o—=(Ty, + - » O T ECH(0, L] X), i=1,..., N.

Let us put Wia, 8 w)={veCP(0, to]; X):|[v [, =a I=1,.... N}
a>0, 8¢(0, 1) and p= 0 being constants. We abbreviate W(a, 3, 0)= WAa, 8).
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Finally, denote by Dji=1,... N) the domain of A2'(0), a’¢[0, 1) being a

constant.

Now we introduce the following assumptions.

(3.I1) The operators B(i=1,... N) are defined for v¢ Cx([0, t,]; X) such
that v;: [0, ] >DAj=1,..., N) and

(32) A (00 =(AF )0y, - . » AZ(Q)TNE CMIO, Loli X)

and they take values in C([0, #,]; X).
(3.11I) For any #¢[0, £,), ¢ CM[0, £); X), i=1,..., N we have

| [BA=(0)2](H) || =Ko(l +m T my,),

K, being a positive constant. The norm mvm,, Iis defined by (3.1) with £,
replaced by ¢ (for £=0 this norm equals I, || 7,(0)|-

(3.IV) There is a constant B¢(0, 1) and for any a>0 there is a positive
constant K,,=K,o(a) such that if &, v€ Cpy([0, £)]; X) and

(3.3) N lloeas 1|77 lotg =a, j=1,.., N,

then
[[BA~0u)(H—[BA OW](®) | Sk ds(mu—vm,,), £€[0, &), i=1,... N,

where
s8, 0<s<l,

d,(s):{ s, s>I.

(3.V) There is a constant y€(a’, 1) such that each element vy (i=1,.. . N)
belongs to the domain of Ay(0).

(3.VI) For any a>0 there is a constant B’=p’(a)€(0, 1) such that each
operator BA—'(0)(i=1,..., N) maps W(a, y—a’) into a bounded set of the
space C®)([0, £,]; X).

(3.VII) For any a>0 there is a constant K, =K,,(@)>0 such that for any
set V= W(a, y—a') and any £¢[0, &), i=1,..., N we have

n(BA~OVIOYSKnE  sup, (V)

where V; denotes the set of all j-th coordinates of elements of V' and V1)
'—‘-{‘U/(T): 'U/E V/}
Note that

(3.4) MV) =/§=1Mu(v,)< o

for any bounded set V=Cp([0, £,]; X). Hence, taking p=0 and using Lemma
48 of [6], we find that the sum appearing in assumption (3.VII) is finite.
It follows from assumptions (3.VI) and (3.VII) that

(3.5) My (BA™(O)V)= KyM(V)
for any V= W(a, y—a’). Indeed, (3. VII) implies that
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m(e¥BAOWVN=Kn S _sup [m(eVA)]

Hence, according to Lemma 2(2°) of [2] and Sec. 4 of [2], we get (3.5).

Lemma 3.1. For any bounded sets E, E,, E;=Cy([0, £,]; X) and any
VECM[O, t5]; X) we have:

1° My (EU{v})=MJE); X

2° if E,=FE,, then M\(E)) =Mu(Ey);

3° My(Conv E)=MyE);

4 if M(E)=0, then the closure E of E is compact.

The above lemma easily follows from (3.4), Lemma 2 of [2] and Lemma
4.7 of [6] with (Yew, |- |~) replaced by (Y, |-[), where

Y={y=p--» Ya): Yi€Ys i=1,.., N}
N
and |y| = X |yil-

Theorem 3.1. (cf. Theorem 1 of [4)). If assumptions (3.1—3.VII) are
satisfied, then the problem (1.2, 1.3) has a solution veCQ ([0, £]; X)

NCMU(O, to); X), 8=y—0a’ such that A*(0)veCM(0, £l X), where
CU(O, to]; X)={u=(@s, .. uy): m€CNO, L]; X), i=1,...., N}.

Proof. We proceed like in the proof of Theorem 1 of [4]. Namely, let
us take into consideration W(a, 8, p), where a>0 and p=1 are some cons-
tants which will be specified later. Note that W(a, 8, p) is a convex, closed
and bounded subset of C,{[0, £); X). For any v ¢ W(a, 8, p) consider the pro-

blem
w) () + A (tyw,(@)=[B,A~(0))(t) 0<iste w(0)=1,.

In view of Theorem 2.1 there exists a unique solution w,¢C([0, £]; X)
NCY(o, ¢); X) (i=1,..., N) of the above problem and, moreover,

| A% (O)w, I{S_’,,,,,.s K| BA=(0)7 o+ || A7) |))-
Hence, by assumption (3.Il[), we get
(3.6) { A;"(()}w, mg,)/.;,..fs K(KyNap'—'+ Ky +b,)
(i=1,..., N), where b,= |g|‘as§v [| A7 (0)vy, |
Now we define on W(a, 8, u) an operator T setting 7v=A*"(0)w=(A(0)w,, ...
Ay (O)ywy)=((Tv), - . - (T?)y). Choosing
(3.7) a=2K(b,+ K,),
(38) W=y =max {1, (2KNK;)'0-")

it follows from (3.6) that ll(Tv),H{g},.,_uSa. veWa, 8, p), i=1,.., N,
i.e. T: Wa, 8, p)—Wi(a, 5, pn).
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Taking into consideration Theorem 2.1, assumption (3.IV), the monotoni-
city of dp, and the inequality dy(s,Ss)=dp(s,)ds(Ss), s;.» S,=0, one can show that

I (T2)—(TD), fostn <Kiads (w0 — VB, ) i=1,... N
for any v, v¢ W(a, 8, p), Ki;3>0 being a constant. Hence we have
a7v—Tvm,, < KyNd(mv—vmy,,, ) v ve¢W(a, 3§ p).

This proves the continuity of 7.
Now let us take any set V= W{a, §, p). Then, in virtue of Theorem 2.2
and (3.5),

M(TV)) KK n—"M(V), i=1,..., N.
Hence, by (3.4), we get

(3.9) M(TV)=KK,, Nu*"My(V).
Taking into consideration (3.8) choose
(3.10) p=max {p,, (KK, N0}

Then it follows from (3.9) that MU(TV)= -3 M(V), V= Wia, 3, p).

According to Lemma 3.1 and the above considerations M, and T satisfy
all the assumptions of Lemma 4.2 of [6] (the Darbo type fixed point theorem).
Consequently, 7 has a fixed point v¢ Wa, 8, p) _with @ and p defined by (3.7)
and (3.10), respectively. The function v=A°'(0)v is the desired solution of
the problem (1.2, 1.3).

Note that the main difference between Theorem 1 of [4] and Theorem 3.1
consists in the fact that the complete continuity of the operators A;'(0), assum-
ed in [4], has been replaced in this paper by some condition imposed on the
measure of noncompactness concerning the operators B;4A—*(0) (assumption
(3.VID),

Now we are going to prove an existence and uniqueness theorem for the
problem (1.2, 1.3) with the aid of the Banach fixed point theorem.

Theorem 3.2 (¢f. Theorem 2 of [4]). Let assumptions (3.1—3.ll) and
(3.V) be satisfied. Suppose that the operators B[A—'(0) (i=1,..., N) map
the product FV into ¥, where F is defined by (2.3). Moreover, suppose
there are constants K,3>>0, v €(0,1—y) such that for any a=e and any
u, veCuh([0, t,]; X) satisfying (3.3) we have

(3.11) | [B,A—'(0)u)(£)—[B, A~ (0)v|(?) ||
sKy(na)' ma—ve,,, te[0, &), i=1,... N
Then the problem (12, 1.3) has a unique solution u¢F¥~ ) CM(0, £); X).
Moreover v, A*'(0)v e CY([0, £,]; X), d=y—a'.
Proof. The first part of the proof is the same as that one of Theorem

3.1. Thus we have 7: W(a, 8, p)—W(a, §, p), a=e and p being defined by
(3.7) and (3.8), respectively. Theorem 2.1 and (3.11) imply that
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I (Tv)—(Tv) 0.2 0= K+ -'mo—v B0 t0m

for any v, ve¢Wi(a, 8, p), i=1,..., N, where
Ky =Kys(Ina+1to)".

This inequality yields aTo—Tov I K Nur+r—'mo—7 _

Hence, setting p=max{p,, (2K N)/0-7"-1} (see (3.8)), we get
— 1 — —
sTv—Tvm,, =5 @80—V8,,,,, v veW(a 3, p)
gonsequently, by the Banach fixed point theorem, T has a unique fixed point
v€ Wia, 8, p). Obviously v and v=A—*(0) v belong to c¥([0,2,] ; X) and, more-
over, v€CM\(0, ¢,]; X) and v is a solution of the problem (1.2, 1.3). Since

a=e satisfying (3.7) can be chosen arbitrarily, therefore it follows that v is a
unique solution of this problem in the set

CR0, &]5 X) N CHO, L] X)-
The proof we have been doing up to the present can be repeated for any
8’ €(0, 8). Consequently, for any & ¢(0, 8) there exists a unique solution
u € CEX[0, t,): X)N CU(O, L]; X)

of the problem in question such that A*(0)u¢CE([0, £]; X). It follows from

the unicity that #—wv. This completes the proof.
4. Integro-differential equations. Now, like in [4], we consider the parti-
cular case of the operators B, given by the formulas

(4.1) (BoXt)=g.t. At). Ao D) jh,(t, 5. o), AW(S))s),

fOf te [01 to]n l= l’ .. N' Where .v((pl(t))z('vl((pll(t))’ B 'UN(‘P{N(t)))
and (y/(f)) is defined likewise. We use the notation introduced in the pre-

vious sections. Moreover, let us put
D'=D,X ... XDy, XV={x=(xy,..., xy): x;€X,j =1,..., N}

N
lxlzll'.llix/H. xe XV, E={(t s): O0st<t, O0=s<t},

W,={xeXV: || x)||sa j=1,.., N}, X,={xeX:| x|=a} (a>0).

We introduce the following assumptions.

(4.1) The operators gfi=1, ... N) are defined for £¢[0, £, v, ye XV D',
Z€ X and take values in X. Moreover, g, are continuous.

(4.11) For any t¢[0, &), v, ye XV, z¢ X we have

llg(t, A*°(0) v, A= (O)y, 2)|| = Kis(1 + mvm +mym+|[z]]) i=1,.., N,
Kis>0 being a constant.
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(4.IlI) There are constants B¢ (0, 1), B, €[B, 1] and for any a, 6>0 there are
constants Kj;=Kea, b)>0, By =Bq(a, b) € (0, 1) such that
| g(t, A= Oyo, A=*(0)y, 2)—gdt's A~ (0)', A~ (0, 2)]|

=Kldo(mv—7' m + my—y m)+dp(l|2—2 V4|t ) i=1,... N

for any v, 7', ¥, Y €W, z, 2¢X,, &, t'€[0, £,].

(4. IV) The operators 2{i=1, ..., V) are defined for (¢, )€ E, v, ye X¥N N D'
and take values in X. Moreover, %; are continuous.

(4.V) For any (¢ s)€E, v, ye¢ XV we have

| 2(t, s, A*'(0)o, A" (0O)) || =Ki7(1+ mv® +mym), i=1,.., N,

K,;>0 being a constant.
(4.VI) For any a>0 there are constants K,3=K,5(@)>0 and B3=PBs(a)¢(0, 1)
such that

| kit s, A=(0)o, A~ (0))—A(t, s'. A~ (0)2’", A—~"(O)y")]|
=Kisldpp(mv—v' @ + my—y' @)+ ([—1'| + [s—5"|)¥]

for any (¢, s), (¢, S')EE, v, ¥, y, Yy eW,, i=1,.., N.
(4.VI) The functions ¢y, vy: [0, {]—R, i, j=1,..., N satisfy the in-
equalities

0=9, ()=t 0=y )=t

Moreover, the functions y,; are continuous, whereas ¢, satisfy the uniform
Holder condition | @ (f)—@(s)|=Ky|t—s®, ¢t s €[0, £, Kig>0 and B¢
(0, 1) being some constants.

(4.VIIl) For any a, >0 there is a constant Ky =Ky(a, b)>0 such that
for any £¢[0, 4], V, YW, and Zc X, we have

m(g(t, A=(0)V, A~ (0)Y, Z))=Kyplm(V)+m(Y)+m(Z)), i=1,...N,
where ,H(V)zéf_l m(V;) (see (3. VID).

(4.I1X) For any a>0 there is a constant K = Kjy(a)>0 such that for any
(¢, s)EE, V, YW, we have

m(h(t, s, A= (0)V, A~ (0)Y)) =Ky[m(V)+m(Y)}, i=1,..., N.

Using Lemma 2(3°) of [2] one can easily show that assumptions (4.1—
4.1X) imply assumptions (3.1l — 3.IV), (3.VI, 3. VII) for the case (4.1). There-
fore Theorem 3.1 yields the following one.

Tiheorem 4.1. If assumptions (3.1, 3V) and (41 — 4A.IX) are satisfied,
then the assertion of Theorem 3.1 holds true in the case (4.1).

Retaining assumptions (3., 3.V, 41, 4.1, 4IV, 4V, 4VIl), and suit-
ably modifying assumptions (4.Ill) and (4.VI), one can find the validity of
Theorem 3.2 in the case (4.1).

5. Example. We shall consider the Cauchy problem for a system of ran-
dom integro-differential equations. We begin with some lemmas and defini-
tions.
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Lemma 5.1. Let A be a closed linear operator in X with a dense do-
main D(A), and assume that the resolvent R(h, A) exists for all . with
Re A =0 and satisfies the inequality

|R(A, A) || =N(1+[2 )7

N,>0 being a constant. Let B be a closed linear operator in X with a do-
main D(B)D>D(A?%), 3¢(0, 1] being a constant. Then there exists a constant
Ny>0 such that

|BA || =Ny ||ull, ueX.

Proof. By [1] (Sec. 2.14) the operator A—% is bounded. Since D(B) > D(A?),
BA—3 is defined on X and closed. Consequently, by the closed graph theorem,
BA—% is bounded.

Let (Q, I, P) be a complete probability space. In our further considera-
tions X will denote the Banach space L’(Q) (r€¢[l, o) being a constant) con-
sisting of all random variables «:Q—C with finite norm

| =1 f | (@) Pde)},

where C denotes the set of all complex numbers.
Definition. A random variable u: Q—C is said to be simple if there

exists a finite number of disjoint sets Q€I (i=1,..., m) such that
Q=Q,U ... UQ, and u(w)=c, 0cQ; (i=1,..., m),

where c¢,¢C are constants depending on u. .

Denote by X, the set of all simple random variables. Obviously, X,c X
and uv¢ X for any u€ X, and v¢ X.

Lemma 5.2 (see [5] (Sec. 3)). The set X, is dense in X.

We make the following assumptions.

(5.1) S;: [0, t;)<xQ—R (i=1,..., N) are random functions (i. e. for any
t¢0, ;) the functions S(# -) are random variables) such that for any £¢[0, #,)

S(t, ®)=N, almost everywhere (shortly a. e) in Q (i. e. for any 0¢Q,.
where P(Q,)=1) and S/(£ )€ X, where N3>0 is a constant. Moreover, there
are constants N, >0, a¢(0, 1) such that

156 1SN b=ttt BEIO, £,
(5.11) The set D = {u¢ X: S;(t,-)uec X} is independent of #¢[0, ¢, and
i€{l,.., N}
Note that in general D is a proper subset of X. For instance, if S(¢, -)

does not belong to L*(Q), then DA
Assumptions (5.1, 5.11) will be satisfied if we take, for instance,

S(t, o)=s()s(®), LE[0, fy) ®€Q, i=1,.., N,

where s¢ X, s(w)=N; a. e. in Q(N;>0 being a constant), and s,: [0, £]—+(0, <)
are uniformly Holder continuous functions with exponent a. The set 0 is then
defined as D={u¢ X: su¢ X}.

. Now we introduce operators A7), £€[0, Z,). i=1,..., N defined by the
ormula
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(5.1) Aftya=S(t, -y, ueD.

Operators of similar type were considered in [3] (Sec. 4.6).

Lemma 5.3. /f assumptions (5.1, 5.1I) are satisfied, then the operators
A/(t) defined by (5.1) satisfy assumption (3.I).

Proof. It is clear that D is a linear set of X and A/(f) are linear ope-
rators. The relation X;—=D and Lemma 5.2 imply that D is dense in X. More-
over, A(t) are closed operators. Indeed, under arbitrarily fixed / and ¢ take a
sequence (#,) of elements of D such that u#,—u and A f)u,—v in X.
Then there is a subsequence (also denoted by u,)) such that

Uy (o)—u(w), St o)uylo)—-v(w) a. e. in Q.

Hence it follows that S(f, o)z, (0)—S(f, o)u(®) a. e. in Q.
Thus we have proved that Si(Z, -)u=wv¢ X and consequently z¢D and A(f)u=wv.
One can easily find that the resolvent R(A, A(f)) exists for any L¢C

with ReA=0 and is defined by the formula [R(A, A(?)]v=[S{(t -)—A] v.
Hence we have

IR AD) || =Nz'(1+ N1+ 1)
and || A(4H)A7Nt)—1 || =N |t,—t|% ¢, £3€[0, £,], where /is the identity ope-
rator in X. The last inequality implies, by [1] (Problem on p. 110), the follow-
ing one
I ALt)—ALE))AT(ts) || =Nl t,—ta | 4, ty £5€[0, 2,

where N,;,>0 is a constant. This completes the proof.

Note that in general A/(¢) are unbounded operators. Moreover, the powers
A;5%¢), 8=0 are bounded operators but not completely continuous.
Now we shall consider the problem

52) T+ AN =G, £, U, AU KO
K@), ZAAD). ZAA@ ). [Hi(. b, 50(5)

UVI(S)) KLAS)) K(AWA(5)), Z(As)), ZLvAS))))ds),
0<tsty i=1,... N,
(5.3) 2{0)=vy, I=1,..., N,
where v(¢,(f)), v(v,(s)) are defined in Sec. 4 and

K(o(£)) =(Ky(0,(0)s - - o Kidop())),  Z(A) =(Zis(vi(O)s - . .. Zin(Ta(D)))s

and the remaining components depending on K; and Z,; are defined likewise
The following assumptions will be needed.

(5.111) G,: QX[0, £,]}XC™+' -~ C and

H;: QXEXCW—C (i=1,..., N)
are random functions, where £ is defined in Sec. 4.

2 Cepamua, xn. 1
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(5.IV) There exists a nonnegative random variable &€ X such that
|G, 0,... 0)], | H(w, 0,..., 0)|=E|(w) a. e. in Q.

(5.V) There are constants €, € ¢€(0, 1), N;>0 such that for any a>0
we have
G, b, Uy, ..o llg 2)—Gi(@, t ly -ty 2') | =NG[ [ E—2 [+ (1 +a' o) us—u;|

et o+ |t —tt] |+ | gt | + | as— 5] + (=g | + [2—2 [}, i=1,.eu N
for any ©€Q,, ¢, t'€[0, to), us uy uy, u€CY, u;, u}eC‘V, j=1,2 5,6, 2z 2'¢C,

where , o y . B
|up—ty | :jil |~y |, CY={weCV: |w|=a},

and Q,¢T is such a set that P(Q,)=1.
(5.VI) There are constants &, €3€(0, 1), N;>0 such that for any a>0
we have

| H; (o, t, S, Uy ..., tg)—H (0, ¥, s, uj,.., u)|=N[(|t—8|+]|s—s" )=
+(14+a' o) |ug—uy |+ | ag—ug )+ |y —uy | + | ug—uy| + |us—ug| + |ug—ug|]
i=1,.., N
for any (¢, s), (¢, s')¢E and any remaining arguments as in (5.V).

(5.VIl) Each element vy (i=1,... N) belongs to the domain of AY(0)

where v¢€(0, 1) is a constant. )

(5.VIIl) The operators K;;: X—X (i, j=1,..., N) are completely conti-
nuous, whereas Z;;: D,;—X(i, j=1,... N) are linear closed operators, where
D= X include the domain D; of A%(0), a’€(0, v) being a constant.

Note that assumptions (5.IV—5.VI) imply the inequalities
(54) |G, t. uy, ... U 2)| =& (@+Ny(|uy |+ ... +lug| + |2)), i=1,.., N
for any (o, ¢, u,, ..., U 2)€2X[0, t,] < CoN+1 | and
(5.5) |H (o, ¢, s, ty,.-. ug) |SE(@)+Ny(|uy |+ - .. +ugl), i=1,.., N

for any (o, £, 8, U, ... Ug)€QXEXCY, where N,>0 is a constant and &, ¢ X
is a nonnegative random variable.

Now take into consideration the complete continuity of the operators
K;; A;*(0), the boundedness of the operators Z;;A, " (0) (following from Lemma
5.1), and the definition and properties of the Hausdorff’s measure of noncom-
pactness. It is not difficult to prove that assumptions (5.1—5.VI), (5.VIII)
and inequalities (5.4, 5.5) imply assumptions (4.1—4.VI), (4.VII, 4IX) for
the operators

& (t. u, v, Z)’f G,( LY el K,'(u). K,’('(’). Z;(ll)- zt(v)- z)n
ht, s, u, v)y=H, (-, t, s, u, v, K(u), K(v), Z,(w), Z(v)).

Hence, taking into account Lemma 5.3, we conclude that if assumptions (5.1
5.VIII) are satisfied and the operators A/f) are defined by (5.1), then Theorem
4.1 can be applied to the problem (5.2, 5.3).
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In the considered problem K;; may be continuous operators such that the
sets {K(u):u¢ X} are finite dimensional. For instance, we may take

K@) = &;(] al) uekX,

where &;: [0, o)—C are contiouous functions. Finally, Z; may be defined, for
instance, by the formula

Z;{u)=nyu, ueDy,
where m; € X are such random variables that D, ={v¢ X:nweX}2D;.
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