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ON THE COVERING OF TRIPLES
BY EIGHT BLOCKS

D. T. TODOROV

Let n>Fk>t be positive integers, and let & be a set of n elements. Let C(n, k, ¢) denote
the number of k-tuples (subsets of Z having k& elements each) in a minimal system of A-tup-

les such that every #-tuple is contained in at least one A-tuple of the system. It is known
when C(n, k, 3)=i for (=7 [I, 2]. In this paper a complete description is given of those n
and k& for which C(n, k&, 3)=38.

1. Introduction. Let 2 be a set of n elements, i. e. |2 |=n, and n>k=¢
be positive integers. A collection F={B,, ... B,} of k-tuples of Z is called
(n, k, t)-covering if every ¢-tuple of & is contained in at least one B, The
elements of F are called blocks. Let C(n, &, £) denote the smallest integer m
such that there exists an (7, %, f)-covering (called covering design) having m
blocks. For {ay, ..., a,}<%, and GEF let G(a,, . .., a,) denote the number of
blocks of G containing {ay, ..., @}, i. €.

G(ay, .o a)={B;€G:{ay, ..., a,}=B;}|
If G(ay, ..., a,)=0 we shall write (¢, ..., a,)cG. The following inequalities
hold (cf. [1]):
(1) Fla)=C(n—1, k—1, t-1),
(2) C(n, k, t)y=nC(n—1, k—1, t—1)/k|,

where |x[ denotes the smallest integer that is at least x.

For any a¢Z let SF(a) denote the set of all p¢Z that are contained in
exactly the same blocks B¢ F as a(a¢ SFH(a)).

Further on, let 2(i)={a€Z : Fla)=1i}. It follows from (1) that if i<C(n—1,
k—1, t—1) then Z()=@. Let AZ GZF, G={B,,..., B;}. We say that A

is “broken” in G if AC;/GlB/’. AOB,/-#Q. ACtBI,» J=1,2.., s

Let m, t be positive integers. It was shown in [I1] that in the set of all
ordered pairs (n, k) such that C(n, k, t)-<m there exists a pair with n/k maxi-
mal. The notation I',, was introduced for this maximal ratio. Particularly, a
complete description was obtained of those n and k& for which C(n, k, 2)=i,
3<1<,12, and C(n, k, 3)=J, 4=j=6 (we note that C(n, &k, f)=t+1 [1]). The
case C(n, k, 3)=7 was studied in [2]. Combining the results in [I] and [2] we
get the following theorem:

Theorem 1. (a) C(n, k, 3)=4 if and only if 1<n/k=4/3.

b) C(n, k, 3) =5 if and only if 4/3<n/k=7/5.

ﬁc) C(n, k, 3)=6 if and only if 7/5<n/k-.3/2,
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ON THE COVERING OF TRIPLES . . . 21

(n, R)==(6t+3, 4t+2), t=1.

(d) C(n, k, 3)=T7 if and only if either (n, k) = (6t+3, 4 + 2), t=1 or
3/2<n/k=17]11, (n, R)=(17¢£+3, 11£+2).

It follows from this theorem that ', ;,=4/3,I; 3=7/5,Tg3=3/2, I';3=17/11.

2. The Case C(n, %k, 3)=8

Lemma. Let n>k=3 be integers such that either

(i) n/k>8/5, or

(ii) n=8t+3, k=5t+2, i>1.

Then C(n, k&, 3)>8.

Proof. Suppose on the contrary. Let | #|=n and F={B,,..., Bg} be an
(n, k, 3)-covering. Denote B,=%\ B, i=8(B, are also called blocks). It seems
more convenient to write B;..., instead of B, N B;N ... N B,(B;
NB/N ... NBy) 1=i, j,... s=8.

If n/k>8/5 then (n—1)/(k—1)>8/5, and C(n—1, k—1, 2)=4([1, 3]). There-
fore Ma)=4 for every a¢Z due to (1). We distinguish two cases:

Case . Z(4)3=Q. .

Note that if (i) holds then Z(4)#+ Q) since

3) T |Ra)|=k F|.
at

Now let a€Z(4), a¢ By, and let SF(a)| be maximal, i. e. if B¢ Z(4) then
| SF(B)|=| SF(a)|. Denote F,={B;, By, B;, B,}. Obviously the block B\ SF(a),
i=4, form an (n— ISF(a)Sl. k— | SF(a)|, 2)-covering, and since C(n, &k, 2)=4
if and only if 3/2<n/k=5/3 (cf.[1]) then
(4) | SF(a)|=:[(54—3n)/2).

We can suppose that SF(a)=2B g3, (if Y€ Bgas then y can be removed
from B;). Further on, there exists B¢ 2\ SF(a), F(B)=2. Let BeBy, A=Byy
NSF(a), B=B, |) By(Bia= D, since if ye¢B,, then (a,B,v)c F). Let A, =AB:
i=34A;NA=@), A'=A\(A3UA)). Since the pairs (8,, B,) have to be cover-
ed in B; B,, and since this cannot be done in one of these blocks (2(n—£k)>k)
then without loss of generality we can suppose that B, is “broken” in Q={By
B}, and B,=By.Let Bi=8,(1 Ba, w=|B|, =430 A, 1) B\, Zy=A"U(B,\5B1)
If be&, then F(a, b)=3, and there exists y¢& such that Fla, v)=Fa, v, 6)=2
If b¢&, then Fa, b)=2. Obviously || = |A3U Ay| +w=5k—3n—2|SFa)|,
| SAa)|+ |A|=2k—n, ' X3|=3n—4k+2|SFa)|.

1) For every BeZ, FB) -5

Conversely, let B¢ By s Reversing the roles of and B we see that one
of the B,,i=-1,2,say B,,is* broken” in {3;,B4},and the other(B,)is contained in By If
ve A’ (1 B., then from B, i=5:

4|SRa)|+2(r—k)+2|A |+ | AU A |= 4(n—hk),
which is a contradiction. Therefore A’ Biy = @, and from B;, B,
2|SF(a)| + |AN{B}| + |As U A, | +(n—E)=2(n—k).

This yields 52—8%&+2=0 contradicting (i) as well as (ii). Thus it is proved
that if €A’ then F(B)=5 but obvivusly our considerations are valid for

BeB,\ B
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2) For every a¢Z,, Fla)=5.
We shall prove the assertion for a¢A; but the proof will be valid for all
elements in Z,.

Suppose on the contrary, and let a¢An Byser. Therefore By (By U Bys)
=@ (if either b, € Bys, b5€ Bys, OF b,€B,ss, b¢B, then (a, by, by) cF). If
A’ N By= @ then from Bg:

|SA(@)| + [(A3U AN\{a} |+ |§u | +ww=n—*k,

which is a contradiction since from B; we have (P“; =2k—n— |SF(u) | —w
Thus A’ By+=@(| A’ N By|=2| SF(a) ) and consequently Bass: = Bigs: = D.

2a) Let B,,+ @, 5=i<j=7. From 1), and from 5B, i=3,5,6, 7, 8, we get
(note that B,;— @, j=5, 6, 7):

4|SF(a)|+3(n—k)+|A |+ |AN{a} [+ 2] A3 U A | =5(n—k).
This gives 10n—16k+1+2|SF(a)|=0, a contradiction.
2b) Suppose that Byss = @, Bas:+ D» Barn+ Q. From Bs, By (note that Bis
=Bs=0Q):
2| SF(a) +| AN(A' N By) |+ AU A |+ (n—k)=2An— k),

which is a contradiction since A’ By+ .

2¢) Let By = Bagi =D, BanF+ @ 1t is clear that | Byg; || SF(a) |+ |AN (A’
N By | (we have Byy=@ and then | By | =n—k—| SFa) |—|AN (A’ N By)|). Coun-
ting the elements in B, i=5, we obtain (B,;;=Q):

4 SF(a) |+ | A|+2n—k)+| By | +2| X, | =4(n—k).

Since | A’ 1 By 2| SF(a)| this gives 10n—16k+3 | SF(a)|--0.

2d) Byy— @, 5<i<j=7. From B, i =5 and from 1) we get 4|SF(a)
+ | A +2(n—k)+2|Z,|=4(n—k), a contradiction.

It is proved that for every a¢#,, Fla)=5.

3) For every B¢ %, F(B)=6. )

‘ Lst l:;S denote Fy=F\F,={Bs, B B Bg)y Ai={a€ A’:Fya)=3, a¢ By

i=1, 2, 3, 4

3a) A, +Q, i=4.

First we shall prove that B,,= @, 5=i=8. Conversely let B,;+@. There-
fore By~ @, 6=1 < j<8, since if Byy;;+ () selecting b,€B5, by By, a Ay
we obtain (a, b,, by) cF. Now using 1) and 2) we get from B, B, By:

3| SHa)|+|By|+| ByN{b} |+ | AN A |+ | 2, | =3(n—k)

(b, € Bys), which is a contradiction. Hence By~ @, 5128,
Further on, for every b€ By, Fy(b) =2 since if b¢ Byyq. acA, b,¢B, then

(a, b, b)) ¢ F. Now from B, i=5, 6, 7, 8:4|SF(a)|+2(n—k)+ | A +| A1) A,|
~4(n—k), a contradiction. Thus at least one of the A, is empty.

3b) Al=@, AFQD, i=2, 3, 4.
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Let B,s<=@, and by Bys. As before B,,, @, 6=i < j=8. Suppose that
bgeBgs6 If by¢B,-, aeA4 then (@, by, b3) cF. Thus B; =By, =@, and since
By.o= @ then from B, B, we get

2|SA@)| + [ANA, | + [AUA| +(n—k)=2(n—K),

a contradiction. This shows that By, =@, i=6, 7, 8. Now from B, i=5,6,7,8:
4|SAa)|+ &, |+|A|+2(n—k)= 4(n—k) whichyields 7n—11k=0. Thus, we have
proved thatB,,,—Q Suppose that B,;+ @, B:+@. Clearly By = @D, i=6, 7, 8.
From B;: 1325| =n—k—|SFa)—|As U A,| and therefore IB%UBTUBRI<|SF((1)|
+|A;UA, . By our choice of a we have |Byyg| =< |SF(a)|. Now from B,
i=5,6,17, 8:

6| SF(@) | +2An—k)+ | A[+2|A;U A, |+ w=4(n—k),

which gives 10n—16k+3<0 (note that | SA(a)|=2k—n—|A|<2k—n—3 since
Ai+@, i=2, 3, 4). Thus, not more than one of the sets B, i=6,7,8 is non-
empty. Let B,; +@. Therefore By~ @, and from B;, B :

2{SF(@)|+(n—k)+| AN(A U AY|+| A3 U Ay |=2(n—k),

but this gives 57 —8k+ 30, showing that_B,,: @, 5=i=8. Obviously |By;,| =0,
6=i<j=8, | Byg:s| = | SF(a)|, and from B;, 5=i<=8:

5| SHa)l+2(n—k)+! Al+|A31) Ay |=4(n—k).
a contradiction. Therefore at least two of the A, i=4 are empty.
3c) A=A,=Q, AF+Q, i=3, 4

Suppose that Bys+@. Then B, =B,.— @ since if b, € By, by€ Byss.a€ Ay
then (b,, by, a) ¢ F. We shall prove that By,;=@, i=5, 6, j=7, 8.
Conversely, let Bys:+ @. Therefore B, =@, and By- =@ since if By =@
then B,s= @, and using that By = Bagee= D, | Bagis | <2 | SF(@) |, | Bagrsl = |SF(@) |
we get from B, 5=i=8:6|SF(a) +2(n— kR)+|A|+| A3 U A |=4(n—k),but this
ylelde (see (4)) 7n — 11k =0. Now from By, B;: 2| SF(a)| + | AN Aq| + | Ay
VA, |+n—k -2(n—k), a contradiction.
Thus, Byy= @, i-5, 6, j=7, 8 and By,+@ (from B;, By: 2| SFa)| +(n
~k)+| A|+| AsU Ay |—(Bs U By) N By =2(n—k) which is a contradiction since
I(Bu W:AN B, | >0). Now if b€ Bz 0. o€ Bieo baeBﬂ then (b,, b, b3) ¢ F and
thus either B, B, (B, “B)), or B,n(B.,'IB.,)cB,UBl (B, U B)). If for exam-
ple B,,~B; then from By, B;:2|SF(a)| + | AN Ay +w + (n — k) + A U A, |
=2(n—k), which lslmpownble If B, 1 (By 1) By) < By ) By then from B,.l = 4,5, 6,
7.8:4|SAa) +2|A|+|As U A |+ 3(n—k)+w@=5(n— k).whichyields7n—-llk_,0.
It is proved that By, = @.
Further on, we shall prove that B, = @, i=5, 6, j=T7, 8. Suppose that
By +@. Hence By =@, Byg: ~ Bagy= D (if Bys; + @ then B,,= @ and from By,
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B,; we get a contradiction) and | By | =n —k— | SF(a) | — | As U A, |. Obviously
‘1[ - 831)*1— |B).)6A |—® B)') %f = ' SF(“)’ and from Bu i = 5! 6’ 7! 8:

6|SF(a)|+2| A5 A, |+ A| +w+2n—k)=4(n—k)

(only the elements of By \ B; are contained in more than one of the sets B, ,
i=5, 6, 7, 8), which is a contradiction. Thus, Bys; =@ and similarly Byij| = @,
i=5, 6, j=17, 8 Now from| B;, Bg, B;:

3|SFa)|+2(n—k)+ | ANA, |+ A3 U A |+ w=3(n—k).

If this inequality gives no contradiction then (ii) holds, Aj=A"\ A;|A;|=1.1t
is easy to see that | A’ |=¢+ | SF(e)|>2(¢t>1). Therefore A;|=2, and a con-
tradiction will be received from Bj, B, B..

3d) Finally suppose that A;=@, i=1, 2, 3, A=+ .

Clearly Bygg:=@. Suppose that By +@, 5 <i < j=T. Therefore B,,;= @,
i=5, 6, 7, and from B;, B, B- we get

3| SF(@)|+2 |45 U A, | +2(n—k)=3(n—F),

which is a contradiction. Let Byss= @, Bysi+@» Basz+@. Then Bz =Bjg=,
and from B;, By:

2| SF(a)|+2| A3 U Ay [+ (n—R)=2(n—k),

a contradiction. Therefore we can suppose that B, _E,.ﬂzg,_ém.,ar:@_ This
yields B,; = @ and then | B,;, |=n—k— | SF(a) |—| A3 U Ay|. Now | By | << | SF(a) |
+|AsU A, | and from B;, By, B;:

() 4|SF(0) |+2n—k)+3| A3 U Ay |+ w=3(n—k).

If (5) gives no contradiction then (ii) holds and B.,Q_B,UA’ U SF(a). Suppose
that B.m:f:(D Therefore either B,, < B (B,: < B), or BN (Bs ) B, )chUB,
(B, U B)) but in the both cases the inequality (5) will be strong. Thus, By = @-
Now from By, By: 2|SAa)| + | A| +(n—k)=2(n—k), which is a contradiction.
Therefore Bayg= Bag; = B,.,-_(D and from By, By, B;: 3| SF(a)|+2(n—k)+2| A,
U A, | +w=>=3(n—*k), which gives 7n—11k=0.

Thus it is proved that for every B¢, F(B)=6.

Since Fa) -4 for every a¢Z, and |Z,| =n— | Z| — | By| — | SF(a) | = 3n
—4k+| SF(a)| then a simple counting yields 4n+ |2, |4+ 2| Z,|=8k, which gi-
ves 7n—11k=0, a contradiction.

CASE 1 has been eliminated.

Case 2. Z(4)=.

Clearly (ii) holds, and |#(5)| =8¢+2, |%(6)|=1. The element of #(6) will
be denoted by w. ) -

1) Let a¢ Z(5), a€B,qg. Suppose that one of the blocks B, >3 has no
common elements with the union of three of them. For example let B, (B,
U Bgl) By)=. Therefore Byg: = D
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In‘eed if B;s;= (), then the blocks B,\{a},i=4, 5, 6, 7, form a (8£+2,
5t+1, 2)-covering and then all triples containing a are covered by the blocks
B,, Bs, B;, B;. Consequently o can be removed from B, which yields a¢ Z(4),
contradicting CASE 1.

Now we shall prove that for every pair (o, ay), Fla,, @))=3.

Conv‘ersely let @, as€Z(5), Fla,, @s)=2, a,€Bys, 0y € By and let | SA(a,)|
+|SF(a,) | be maximal, i. e. if B, Bo€ Z(5), F(B,, By)=2 then | SFAB,) |+ | SABy)|
=|SHAa,)|+|SFay)|. We introduce the following notations: D= BIUB2 (ob-
viously Bu—@) R, = {Bs, B:, By}, R,= {Bm B, s} Ry={Bs, B,, B}, R?‘{B3'
B,, By}, Di=(a¢D: Rya)=1, a¢B,}, i=6, 7 8, and similarly Dz-—{aED Ry(a)
=1, a¢B}, i=3, 4, 5, A Bm\(SF(a,)USF(a,)) Note that B, N (D\{o}) + @.

2) D! = Di’“@ i=6,7,8, j=3, 4, 5.

Letb, ¢ D;n B,. If b,eBJ, then (b., bz. as) ¢ F so DN B;,=B, and this yields
D}=B,. Thus, either U D;=B,, or U Di<B,, and obviously this holds also for

the D/
2a) First we shall prove that not more than one of the D!, and one of the
D7 are nonempty. Conversely let Dhi(b Di#+ @, Déc B,. This yneldsBoe—Br
=@, and therefore Dj- (@ due to 1) (B, has no common elements with B, |J B,
UB—) Thus, By, =@. Since Ra)=5 for all ag¢ 2\ {w} then Di+@, i=3, 4,5,
(if D3 =Di=, then BN\ {w}=B; N B, and thus, B; =B, which shows that at,
5

least two of the D} are nonempty), U Dj=B,\{}. If there exists a pair (i, f)
i=3

i €{3, 4, 5}, j€{6, 7, 8} such that B, then selecting b,¢D}, b,¢D,a¢By
we obtain (a, b,, by) ¢ F, a contradiction. This shows that B;; = @, i=3, 4, 5,
i=6, 7, 8, and consequently A=$m}, or A=(@. Without loss of generality we

can suppose that o¢B, and o¢ U B,. Counting the elements in the blocks of

R, we get 3|SF(11,)|+2|B1 |~3(n k), which gives 3|SF(a,)| =3¢+1, a con-
tradiction. Thus it is proved that not more than one of the sets D], and one
of the sets D? are nonempty.

2b) Let Di+@, Di+@, DiU DiSB,.

Clearly Bys — Bag —B,q. = Byy:=@. We shall prove_that B,,:#: @, i=3, 4,
6, 7. Let Byy — @. Since By =@ then, according to 1), B,u:i:(b which contra-
dicts Di=@. Thus, B,,#@ i=3, 4, 6, 7. Moreover, B,, UB,‘;B,\jm} By
U By 2 By\{o), and B,, o} + @, =3, 4,6, 7 (if Byy={w} then | By, | = n
—k—1, and since ag€ B, then B”.,@ a contradiction).

Let b, ¢ By, b€ By, where {i, j}={6, 7} (since By \ {o}+ @ sucha choice
is always possible). If by € Byys then (b,, by, b )cF Hence Bys=@. Let ac A
N #(5)N Bgg. Suppose that a€By. Selecting b, € Dy, by€ By, we get (a, by, by)
¢ F. Therefore AN Z(5)N Bys = @, and from B, By:

| SF(ay) |+ | SHag) |+ A| +l+(n—k)-lD‘UD§|22(n—k)'

which is a contradiction since | SF(a,)|+|SF(ay)|+| A|=2k—n.
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2c) Let Di+@, Di+@, Di=B,, Di=B,.
Obviously By,= @. According to our choice of a;, a,, we have D} |=|SFa,))

' D3|<|SF(ay) . As before B, @, i =3, 4, Bjs, = D, By+@, j=6, 7, Bos = @
due to 1).

(a) First suppose that Bm#(Z) Bm—c(b B,(,,,:#:@ Bys: += @. This yields

i/—® l—3 4 j 6 7 (lf bEB36’ bleBl4‘Z' b968257 then (b bl' bg) CI') and
therefore either A={w}, or A=).

(a,) Let A={w}. Then | SF(a,)|+| SF(a,) |=2¢ Suppose that o ¢ By, ® ¢ By
From B, i=3, 4, 6, 7 we get

2| SF(ay) | + | SF(ay) ) + | D| + | D2 |+2(n—k) + 1=4(n—Fk),

which is a contradiction since |D}| + | D?| = | SF(a,) | + | SF(ay) |. Thus without
loss of generality (oeB34 Now from B, i=3, 4,6, 7: |Ds|+ D2|—2t(and there-
fore | Di|=|SF(a,)|, | D3 |_ | SF(a,) ) and B,\Di= By B,, B;\D>=B; ) B..
Thus, from B,, B,: |3\ng-—2(n k)—4| SF(ay)| —2, and from 36, B:: | By
D3| =2(n—k) —4|SF(a,)|. This gives 5|SF(ay)| + 2= a contra-
diction.

(a;) A=@. Let 0¢B,. If 0¢B,, then | Di|=|SF(a,)| and | D3| = |SF(ay )
(if | Dy < |SF(a,)|then there exists « € B,"\ B, for which either a ¢ By, or a €By, i
{3, 4}, j€ {6, 7}, a contradiction). Now from the blocks of R, : 4| SF(a,) | —| SF(ay)|
—~n—k but from Ry: 4| SFRag)| — | SF(ay)| =n—k+ 1, a contradiction. If
o¢B,; then |Ds| = SF(a,)|—l D3 ]_-lSF(u,,)l and a contradiction is obtained
as before. If w¢B,; then |Di| = | SFay)| —1, | D3| =|SF(a;)| and from R,:
4| SAa,)| — | SF(ay)| =n—k+2 but from Ry: 4|SF(a2)[ |SF(a,) |=n—k—1.
Thus, it is proved that at least one of the sets Bss, Bl Bagr Byg, is empty.

(B) Let Byy=@, Basa + @, Bac" +@.

Clearly B N\ {o} =B, B% By, — @. Morteover By A Z(5)= @ since
if aeB;NA n.‘JI(S) then aqu, R(a) =1 (ob_wously R,(a) > 1, and if aGB-,.
b€ By €€Byg then (a, b, ) cF) If a¢B;, beDs ceD?} then (a, b, c)cF.
Therefore a¢ B, and if b€ By, c ¢Dithen (ab,c) ¢ F. Similarly B, Aﬂ Z(5) = @.
Since By =By =@, and B3+ @ then B, = {o©}. This yields | D3| = |By| = n
—k—1-| SF(ay)|, and then |B,,|=1, a contradiction.

(7) Let By = By =@

Obviously B\ {0} S By, By {0} < By, By ~@. Now from B, By,
B,, B, we obtain 2(|SF(a,)| + | SF(a,)| + |A|) +2(n—k)=4(n—Fk) which is a
contradiction.

2d) Let Dy @, Dy =B,
We have By, +@, i=6, 7 due to 1). Clearly

5 _ 5 _ 8 _ .
'J B?t"’Bn\{‘D}- U By, 2B\ (D U {o}), U‘ B> B\ (o},

Ba« lJB,—,.:eB,\{m} D ) B,= B,. Now select b,¢ By b€ By whereij, {i, j}
‘ 4, 5). We shall prove that this choice is possible. First suppose that
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(B‘m U Bel)\{m}r_Bao Then| By | =n — k—1, |Byz| =0, Bys U By = {0} (B2
U By, =@ vields Ds#qb due to 1)). If Bn\ @ then for example 8,35-—(3 and
since B,y;=+= () then B;.,--@ which gives B,3=(, a contradiction. Thuss Bjse
=+ @, and similarly B+ @. Therefore B;+@, i=3, 4, j=6, 7, and from
B, i=3,4,6,7:

2| SF(ay) | +| SFag)| + | A )+| Di|+2An—k)=4(n—Fk).

This gives | D§|=2¢, but | | SF(a;)|=2¢, and 3t+1= |B,;l\>4t

Now suppose that 823 U By, HBJ,;B% Therefore By = Bo {0}, By = {0}
but this yields B,;=, contradicting D=+ Q.

Thus without loss of generality we can suppose that b € Buoe b,eBm,

Therefore Bja,—=@. If Bm#:@ B,ss+ @ then By; =By =@ and then B3 U By
—{o} which gives | SFlay)|+|A|+1=3f+1, a contradiction. Therefore we can

suppose that B, s=@ and then BH\{co}gBh Consequently By;=@. Further-
more By,;=@ (if Bm. =@ then By;=@ and B,:,UB,«,—{m}) Now consider B, .
Clearly the blocks B\ By, i=2, 3, 5, 7, 8, form an (n— | By, k— | By |2y
covering having 5 blocks and therefore (n—| By |)/(k — ‘B“G‘)«/Q/’S (cf. [1]).
Thus, | By |<[(9%—5n)/4]. It is obvious that the elements of D B, are con-
tained in not more than cne of the blocks B,, By, B.,, B.. If a¢A is contained
in three of them then aEBJ.‘q (|faeBs&,b€B,5,c(Dg then(a, b, c)cF a¢B3Gs,
a ¢ By, since Byy = @). Further on, B,3; = Bys: =@ since B;==@, By+@ but
this gives B3 U Bys={®}, a contradiction. Thus every element a¢A is contain-
ed in two of the blocks B, B,, B, B, at the most. Therefore

2| SAay) |+ | SRay) | + | A|)+2n—k)+ | By |=4(n—k),

which is impossible.
The proof of 2) is complete.

3) B,+@, i=1,2 j=3,... 8.

Conversely let By =@. Therefore By || By, B\ {0}. We shall prove that
it is possible to select b,€ By by€ By where i+ j, {i, j}={3, 4, 5}. If this
choice is not possible then either (Bag U Bg:) \{0) < By, for some i¢{3, 4, 5),
or Bagl) By | By < By, for some Je{6, 7}. In the first case we get a contra-
diction in the way shown in 2d). Let Bgs U Byy |) Bys < Byg. Therefore By, = {o},
By = B\ {0}, Bm @. Since (B,.,UB,-)\im)q:B,,. i=3, 4, 5, we can suppose
that By,-+ @, Bu £@D. Now B];—@ (lf b€ B,y then B“ UBw CB]/.j =7,8, show-
ing that either B, = B,, or By;=B,), and then Byy-+@. Using that By + @,

By + @' we can prove in the same way that By; =@, which is a contradic-
tion.

Thus without loss of generality we can suppose that b,(B,M. b,EB,‘.
Obviously By~ @. If By+@, By @ then By th--@ Hence By; U Bys
={w}, a contradiction. Now suppose that B, =@ (B \ {0} cB,.) Therefore
By=@. If Bye+ @ then By, =@, which is impossible. Hence B,.,—-@ and
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it is proved that every element of D\ B,; is contained in one of the blocks
Ba, B.. B,, B, at the most.

Now we shall prove that the elements of A are contained in not more
than two of these blocks. Let @ ¢ A[) By, Therefore B17 —~ @ and then B, < {o}.
If By, UB“C{(D} then B, = (@, a contradiction. Thus, B+ @ and since By;4+=Q
then B, =@ which shows that B,;,UB,g--{m)(B_,q_@) Let a¢ AN By Since

+@, B+ then 5y =By = @ but this gives By U By = {©}. Thus,
A ﬂB s = @. Since By= @ then A N Bggs = = AN Bys=@. Now we obtain a
contradiction from the blocks B, B4, . By

4)B,,-{:{m} i=1,2, j=3,.

Let Byy={0}. Then By ') B,- -B, “{o}. Now we can select a pair (i, j),
i+, {i, j} = {3, 4, 5} such that Bys+Q, ng, =@ (let =35, j=4) since B,,
+ @, r=7 due to 3). Further on, B,1q~-® If Biyg=+=@, der:(b then Ba;=Ba
=@ contradicting By, +@. If B,.= Bys(Biis= @) then By;=(@. Suppose that
By #+=@. This yields By; = @, a contradiction. Thus, Bys =@ and we have
proved that the elements of D\ B, are contained in not more than one of
blocks B, B,. B, B..

Now if a(Aan then By, =@ contradicting 3). If a(Bu,ﬂ then B,3: =@

and B,s=@ (Bss =D, Bias=@). Since Bys=@ then AN Bygy =BN By = @
This shows that the elements of A are contained in not more than two of the

sets B, i=3, 4, 6, 8, and from these blocks we obtain a contradiction.

Accordmg to 3) and 4), there exist two pairs {i, r}, {j, s}, i+r. {i, 1}
—={3, 4, 5}, j-ts, {j, s}={6, 7,8} such that B,,~+@, B,,+@. Without loss of
generality we can assume that /=5, j=6, r=4, s=7. Therefore B = @. If
Byt @, Bzt @ then By, = -By;= @ and Bm‘:{w} contradicting either 3), or
4). Thus, By=@. B\ {0} S By;. Now By, =@ and if Bma 4+ then an =@
but this yields 2,;c={o}. Therefore B, =@. Similarly Byg=@. Let Byps=@.
As before it is proved that AN Byus=ANBie=AN Bw ~A N Bys = @, and
from B,, By, B., B, a contradiction is obtained. Hence By, @, and Byyy= By

=Byss—=@. 1t By;; = @ then B, ;=@ which gives B, {w}. Therefore Bn\
{w}f‘B,a, and similarly B, N\ {o} ("Bl.. B,,.\{m}f‘Bl.,. Bys N {®} < Bas, B\
g"}(_Bm- By \ {0} <= By DenotingB/\{m} = B, we have B,, =By, B,;=B,,,
w6 = By, Bay = Bgy, Bar=Bay Byg = By, It is easy to verify that A<{o).

(a) Let A={w). Clearly B,=B, i=1,2 j=3,....8 If R(w)=1 then
from the blocks of B,: 3| SA(a,)| + 2(n k) +2 = 3(n k) a contradiction. There-
fore R (w) = Ry(®) 2. From Rl R, we obtain | SF(a,)| = | SF(ay)| =t Let
o ¢ By, UB, 1) By UBy U B“.UBM Without loss of generality we can suppose
that ¢ B,.. Selectlng b, ¢ By, b,eB,., we get (0,, b, w) ¢ F. Now let w¢ By,
Since By = Byg then | B,y = |B,g|= | By | = | Bis| and consequently [B|+ 1=

| Baa | +1a |B,‘|_‘B,,|_$B,,,|=|B,7| Denoting | By, | = x we obtain from | By, |,
1=3,..., 8: 6x+4=6¢ which is impossible,

(B) Au@. Let ¢ B,; From R, we get 3| SF(a,)| = 3¢+ 1, a contradic-
tion.
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It is proved that for every pair (a,, a,), F(a,, ag)=3.

Let a, B€Z. We say that a is equivalent to B, and write a~B if and
only if B¢ SF(a). It is obvious that ~ is an equivalence relation and thus &
is divided into disjoint classes S,,..., S,. Let a¢S,, B€S;, RCF. We define
R(S., S))=R(a, B). Clearly if S*{m} S,z*,:{co} then 3<=HS;, S;)=4. Let F(S)),

RSy, A, S»)=3, S, = q Bu S = ﬂ Bj. Denote R,={B,, By}, Ry={B; B,

B;}, Ry={B., B:}, M;={S;: S, R,(a) j}.Now we shall prove that M\ {o}
=@. Let S;,EMl\{m} S,cBa lf S, eM,\{w} then R,(a)+ Ry(a)=2 for every
agS; since AS;, S$3)=3. Therefore S, N Bs =@. Obviously if S, ¢ M \{o)
then S,-l N Bg= @.
Further on, if S, ¢ My\{o}, S;, =By then S, N Bs=@ since AS,, S5)=3.
Thus if S;=B; then either S;={o}, or S,=B;. Since S;US,US;=B; then
|83| = | Bg| +2, a contradiction. It is proved that M\ {0} = @ and then

B NJ{o}= @, 3=i<j=5. Therefore 8¢+ 3| U B;|=9¢+2 which contradicts #>1.

It follows that Ma, B)=4 for every pair {a. B}=%, but a simple counting
shows that this is impossible.

The proof is complete.

Theorem 2. C(n, & 3)=8 if and only if either

(i) 17/11<n/k<=8)5, (n, k)=+=(8t+3, 5t+2), t>1, or

(i)y n=17t+3, k=11£+2, £t =1.

Proof. First we shall prove that if either (i), or (ii) holds then C(n, &, 3)
< 8. It follows from Theorem 1 that C(n k, 3)>7. Let k=5t+j, 0=j<4.
Since C(n,, k, t)=C(n, k, t) for n,=n it is sufficient to prove that C(n, &, 3)=8
for n=8t+i, k=5t+j where (i, j) is one of the ordered pairs (0, 0), (1, 1),
(2, 2), (4 3). (6, ).

Let S,,... S, be disjoint sets,and A=S; 1 S;1J Ssu.S},B S,US‘USGUS,
Clearly the blocks AUS, and B1S; i=2, 4,6, 8, j=1, 3, 5, 7 cover all tri-
ples of =AU B. If n=8t+i set |S,| = t+1, l;,'agl Swl —t w>i. This
shows that if (i) holds, and (n, £)-=(11, 7) then C(n, &, 3)=8. Setting | S, | =3¢,
| S;|=2t+1, i=2, 3, 4, |S;|=2¢ 55j=8 we obtain C(17¢+3, 11£+2, 3)58.

Finally, the blocks

{1, 6, 7,8, 9, 10, 11}, {2, 6. 97,8, 9, 10,:11),

{3. 6, 7, 8, 9, 10, 11}, {4, 6, 7, 8, 9, 10, 11),

{5, 6,7, 8,9, 10, 11}, 11,2, 545 0 1)

{1, 2 3, 4,5 8, 9} {1..2,.3:. 4.5, 10 11l
form an (11, 7, 3)-covering. The Lemma shows that there are no other pairs
(n, k) such that C(n, k& 3)=8.
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