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A NEW ESTIMATE OF THE DEGREE
OF MONOTONE INTERPOLATION

G. ILIEV, S. TASHEV

Let xo< X< ... <Xp VoW < -+ -<YpoA=max {Ay;:i=1, 2,..., n}, B=mir{Ay;: y,
=1,2 ..., n), C=min{Ax;:i=1,2, ..., n}, D = max {|Aq;|:i=2,3,..., n}, where a;
=arctg (Ay;/Ax;), Ay;=y;—Vv;—, i=1, 2, ..., n. We prove the existence of an algebraic poly-
nomial 2 and an absolute constant ¢, such that: i) Px;)=y;, i=0, 1,..., n;ii) P(x)=0, x

€ (X0, ) ; i) deg P;;c(,ﬁng"o (AP CDLAD .

BB C

1. Introduction. Given a set of real points {x,, y,}7 | (which we shall further
refer to as data set), such that x,<x,<...<x, and y,+y;, i+j, there exists
[1, 2, 3] an algebraic polynomial P with the properties:

i)y Plx)=y, i=0,1,...,n

ii) P(x) is monotone decreasing on [x,_,, x] if y,_,>y, and monotone
increasing on [x,_,, x| if y,_; <y, The polynomial P is called a partially mo-
notone interpolation polynomial. In the situation when y,_ <y, i—1, 2, ..., n,
P is called monotone interpolation polynomial (m. i. p.). The problem of esti-
mating the degree of m. i. p. is recently considered by many authors, using
certain characteristics of the data set. In what follows we shall restrict our
considerations to the degree of m. i. p. First of all, we note that if y,_,<y, ,
=y, at least for some {, then there exists no monotone increasing interpola-
tion polynomial. In this situation we may assumec that the degree of m. i. p
is infinity (deg P= o), This means that the characteristics

(1) B=min{Ay;: i=1, 2,..., n}

(Av,=y,—Vy,.,) is essential for the adequate estimation of deg P. Similarly, it
turns out that the characteristics

A=max{Ay;: i=1, 2,..., n},
C=min{Ax,: i=1,2,..., n}

are also important. All estimates in [4—11]) make use of the characteristic
A B, C.

There are two approaches to the estimation of the degree of m. i. p. The
first one used estimates for the uniform approximation of a monotone conti-
nuous or differentiable function by means of monotone algebraic polynomials.
G. Lorentz andK. Zeller proved 8], that the order of approximation of a
monotone function f by monotone algebraic polynomial of degree = 2 is O(o(f;
n~')), where o f; 8) is modulus of continuity of f. Later on R. Devor [12]
proved that the order of approximation of a monotone function f with A-th
derivative by monotone algebraic polynomials of degree =.n is O(w(f™;

(2)
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n~1)/n*). Thus, making use of the result of [8] E. Passow and L. Raymon [4]
prove the following estimate for degree of m. i. p.

©) deg P= O(4¢)-

This estimate is exact in respect to the order in the situation when the ratio
A/B is uniformly bounded with respect to #. Otherwise, this estimate implies
in general much larger degrees of m. i. p.

The second approach make use of the estimate for the Hausdorff appro-
ximation of the jump-function

—1, x¢[—1, 0]
’("):{ 1, xe( O 1]

by means of monotone algebraic polynomials [13]. Namely, for every 8, 0<3
<1/2 there exists an odd monotone increasing algebraic polynomial P, such
that:

i) degP=n; ii) 0<P(x)<1 if x¢€(0, §); iii) 1 —exp(—cmd)=P(x)=<1 for
x €[5, 1], where ¢, is a constant independent of » and &. This fact has been
successfully used in the papers of M. Nikol¢eva[6]and G.[liev [7].Itisprov-
ed in [6] that if the knotes {x;}”  are equidistant and A/B =< n®% where a=1,

then
(4) deg P=O(n In n).

In this case it follows immediately from (3) that deg P=O(n'+°). The estimate
(4) has been improved in [7] by

(5 deg P=0 (4 ln (-5 +e)).

The estimates (3) and (4) follow as special cases of (5). Moreover, (5) is
order-exact for more general classes of data sets. However, there are data sets
for which the estimate (5) is not (l)rder exact. For instance, if data set is
{-:'- v fal ;)};'=“. where fo(x)=|x— —-|sign(x — —57). x€el0, 1], O<a<1
taking into account that A/B>= a'~< and C=1/n, then (5) implies deg P

O(nlnn). On the other hand, it is known [14], that for this data set we have
deg P=0(n).

Purpose of the present work is to improve the estimate (5) in such a
way that it will be order-exact for wirder class of data sets, which wil in par-
ticular include the above mentioned data set. To this end we shall first in-
troduce an additional characteristics of the data set {x, y,)r_, which is dis-

crete analogue of the modulus of continuity of the function 0/ x)=arctg D(f; x)
[15, 16]

(6) D=max{|Aa,|; =2, 3,..., n},

where «, - arctg (Ay,/Ax,), i=1, 2,..., n. Evidently «, is the angle between
the line passing through the points (x,_,, ¥,—), (x; ¥,) and the real axes.
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2. Main result. Theorem. Given a data set{x;, Y} ((xo<x,<...<Xp,
Vo< < ... <Y, there exists an algebraic polynomial P and an absolute
constant c,, such that

i) P(X1)=y1, i=0,1,..., n,
ii) P(x)=0, x¢€(x5 X,),
iii) deg P<c, "z In (%?4—46—? +%Q+e).

where A, B, C, D are the characteristics defined in (1), (2) and (6).
The proof of the theorem is based on several auxiliary propositions.
The first one gives sufficient conditions for the existence of positive solution
of the system of linear algebraic equations.
Lemma 1. The system

n
(7) t‘-l'- x EUt/=b,-. £=1, 2,.... n,
=1
where €, (i, j=1, 2,..., n) are real numbers and b,>0, i=1, 2,..., n has

an unique positive solution, if there exists a monotone sequence of real num-
bers x,<x,< ... <x, and q>0, such that:

(8) tlemls=l, k=1, 2,...,n,
(9) ;:IC,/|AX/$4C. k=1,2,...,n,
J=1
. min (C3, BC?) ,
(10) Ell eyl | Xy— Xl Axlgq—“‘—DM+C) —, k=1,2,...,n,
where

A=max{b;: i=1,2,..., n}, B=min{b;: i=1,2,,.., n},

C=min{Ax;: i=1, 2,...,n}, D=max{|Aq,|: i=23,..,, n},
a,=arctg (b,/Ax), (=1, 2,... n.

Remark. If D=0, then (8) and (9) are sufficient for the existence of
unique positive solution.

Proof It is easily seen that the system (7) has a dominating main dia-
gonal. Indeed, from the inequalities Ax,/C=1, i=1, 2,..., n, together with

(8) and (9) imply
n i l n ) l
(n /§'|3./|>.-zrlg‘|8./|Ax,$q-_,.3..

Hence, there exists an unique solution. In order to prove that £, -0 (1-k,
<n) in the k,-th equation £y = bs—X) _ €ants, We replace fo,(ky <1, 2,...,n)
by t‘l-b‘l 2:'__' a"‘n“n

e. t. ¢. Thus we have £, - b.,+S:..+R::~. where we have denoted



THE DEGREE OF MONOTONE INTERPOLATION 47

n n n
S:m= — X ak‘k'bk,“" z ak.k. z Ekaky bk._
1 ke— hky=1
+(—1)m1 kz E€x ,,, E ek,k. z ekm—-lkllb‘-'
=1 km=l
Rk,,,_.(_l)m 2 €k .k, 2 ek,k,-- z ekmkm+ltkm+l' m’=2v 3r-
ke=1 ky=1 Rm41 =1
Then, from the relations
(12) Rim— 0, m—sco,
(13) | Sam| < by, m=2, 3,. .

it follows that fx, =0, &, =1, 2,..., n. We shall first prove that (12) holds
true.

n
Denote K= X |¢|. Since |g,|=1, &, i=1, 2,..., n, we have X [e
=l

P
‘.+1 m m+1

ftpy, | =K. This inequality together with (11) impjy
k n n n
IRklm|<K z.ﬂ 'e*lk!l z‘!!skxkxt" .kz llekm—lkmléan_"

Since ¢g-=1/3 (12) follows.
In order to prove (13) it is sufficient to prove the inequalities

(14) }:|su;b,:;qb,, k=1,2,..., n.
. |
Indeed, (14) implies

m—lkml Km

I n n n n
'S‘,ml‘; p)) !S.I‘. bp,',‘- ..+ Z Iﬁk*,‘ z ' 8.,*,‘ coe B €y
kg1 Ayl k=1 k=1

n n n
$qbn.+¢lkil| Ern, | On,+ .- +4 *.Ellsk.k.! Lo z _|len'_,a.._| [ Onp_y

m—1
sqb..+.q‘b.,+ ‘v q""b~.<,—q_—q~ by, < by, because of ¢g=1/3.
In order to prove (14) we shall need the following inequalities:
(15) b,>b.|‘;f"+(AD+Dcx S+pe) | —xaAx) j=1,2....n
For this, we shall prove the inequalities:
(16) b~ Ax;| j— kr)(|+u)u+ )+ ’o,,. J=1, 2.
We have

b b s B A TN
| b2k ||t ay—tg @y | = | sin (@j—a,) | T+ tg¥a, 1+ tgla,
A\'l A.l'.
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={a;—a,| (1+ [tga,|) (1+itga, )=|j—k|D(1 + 3 )(1+ %),
Xk
The last inequality and
. bi bk { AXI'
1= A% | g,y T &, O i

imply (16). Since C=Ax;, j=1,2,..., n, 1=B71,, and |j—k|=|x,—x,|/C
(16) implies (15).
It remains to prove (14). Using (8, 9, 10) and (15) we obtain

,21 | €rs|bj =] €rp| byt z €4 by
= J=E=

| & bk“'““ : Z €y |AXy

+b(DC+AD) (C—*+ B~ lc ) S ey | xy—xe| Axy
JFk

=04 (| 8pa | +39)= b

This proves the lemma 1.

Definition. A 2r-periodic function f is called bell-shaped function lj‘
it is even and non-decreasing for x ¢[—m, O].

Let us consider the generalized Jackson operator

i t2 (o
Um I(va X) Ko, r ch(x+t)(,snr;|’:t/2 )2 dt'

sin mt/2

msingp ) df=1 applied to the function

where pn., [ (

0’ XE['*R, ——1t/2).
or(x)={1, x¢[—mn/2, n/2]
0, x¢€(n/2, =

In [13] it is proved that U, (or; x) is a trigonometric polynomial of or-
der (m—1)r and if m is even then Un (or; x) is a bell-shaped function. In
what follows we shall suppose m even and r 2.

We need the inequalities

(17) m:!; a} o(X)—=UmAor; x)|dx= 8(;;;5)7" -1
(18) UZA acos x| o xX)—UmAor; x)| dx-.82 (,-2-,7";)?' -1

where 0<8<n/2. We shall prove only the inequality (18).
Since
sin mt/2 2

~ Lo sinmt2 \,, , ~m mt|m 2 2
“m.l’ - ]; (m)’ dt =2 f (ms“_"-‘-/-q-)'2 dt =2 {(Mf/'l) d!u"m ( - )2l
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then

n/2—8
g‘ cos x |o(x)—UmAor; x)|dx

g x sin mt |2
=Hm.r of cos x [_f; |or(x+£)—201{x)+ o (x—1) | (msing2 ) dtldx

m n ¥ R2-8 * . sinmt2 |,
=53 [ cosx [ (Gomeg)” @ dx
s G G0 J (Eat.d
=7 -5 I (5 o Gt .dx

2 ®/2—-8
= s m ) [ (g vax

. m w2 o, " n o=
=x@r—1) (2r—3) (GRS ()

Lemma 2. For any positive integers m and r (m-even, r=2) there
exists a positive algebraic polynomial P of degree <(m—1)r, monotone increas-
ing in [—1, 1] and such that for any 0<3<1 the following relations hold:

(19) 181 |o(x)—P(x)|dx = il o(x)—P(x)|dx §5('2§5)”"‘.

(20) — Tx|e)—P) ldx= [x| o(x)—P(x) dxs8® (P,
(21 1—P(x)=P(—x), —lsx=<l,
where 0(x)={ (l)’ ig t._, ll']?]

Proof: The desired polynomial is P(x)=Um, (o7; arccosx). Indeed,
Upm.(or; t) is a bell-shaped positive trigonometrical polynomial which is map-
ped into a monotone and positive algebraic polynomial in the interval [—1, 1]
by means of the transformation #=arccos x. The equality

implies (21). )
Further, put x=cos in the integral

/= ‘;xlo(x)—P(x)ldx we obtain

0
/=— [ cost.sint| o(cost)—P(cost)|dt

arccos §

arccos &

= J cost.sint|oy(t)—~UmdAor; £)|dt

;'Tcos t | Oxt)—Umdor; 8)|dt.

4+ Cepanxa, xn. |
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This inequality together with (18) imply (20). The inequality (19) is proved
analogously.
Proof of the Theorem.
Without loss of generality we may assume that x,=0, x,=1, y,=0.
Form the polynomial Q(x)= X ¢, P(x ——ﬂ—t;‘—_‘—), where P is the monotone
=1
polynomial from Lemma 2 of degree =(m—1)r. Choose the coefficients #; in

such way that
(22) Qx)=yu i=1,2....n

We shall show that the coefficients £, are positive. Thus the polynomial
Q will be desired because P is monotone. Write the system (22) in matrix
form as follows:

[T1—Ay, Ay Ay - - - A, L i ‘_, W1 “)
2 1—Ay 1—Ay T P , ] ty Y2 |
(23) 1—A3 1—Agyp 1—Ag - - - Ay, - t.s 'i V3 \
|18y 1By 18y - 1=8, | W | [ ¥ *1

where the following notation has been used:

4xj . . .
1A= Plo— 500, =L 2 o1 2
Ay P(x,— f!t_“‘”___.;k—‘ )y i=1,2,...,n k=i+l, i+2,...,n.

From (23) we get the equivalent system

| 1Ay A Ay ot A, T
—Ay +Ay, 1 —Ayp—Ay Agy—Ayg cee Aga—A4y, t,
—Ag +Agqy —Agq+ gy 1 —Agg—Ags - - - Ay, —A,, ty

I' '_Anl'l"An—-l.l —‘An2+An—l-2 —Au8+An—l-3 e l—AM-—A,‘_L,‘ - t"

‘_-Ayl.—
Ay,

| Ay,

|

| Ay,

The last system we write in the form

(24) ‘,"' 218”‘/ ’-:-Ay[. i=1, 2,..., n,
Jo-
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where
—An=¢; Ay=gy j=2,3,..., n;
—Ay+A =ty i=2,3,...,n, j=1,2,...,i—1;
—Ai—A =g, i=2,3,..., n;
A—A_ =% i=2 3,..., n—1, j=i+1, i+2,.
We shall prove that for suitable 7 and 7 the coefficients ¢, satlsfy the con-

dition of Lemma 1.
At first we shall prove the inequalities

n 1
(25) I |ey]ax=16 [ |1—P(x) | dx,
-] c/4

n 1

(26) 2l|ek,-| [xi—xp | A, <32 [| x| |1—=P(x)|dx, k=1,2,..., n
i= Cc/a

We have:

E ,,IAx,§2(|A,,|+|A,_,,|)Ax,

k n k—1
:‘EllAule,-{v- z l]AuiAx‘ + z |Ak__,,,!Ax,-
i= i=k+ =1

+',z.} Ap1i| Ax, =S+ Sy + S35+ S,

where Ay;=0, i=1, 2,..., n.

Let & =x,—(x;+Xx,1)/2, i=1, 2,..., & Eppy=(xy—xp—)/4. Then x,—x;_q
=2(&_1—8&) i=2, 3,..., kR and x,—x,_;=4Ex—E,s
From here and the condition for monotonity of the polynomxal P we find

2|8yl Axi=  |1—Plr,—SEEL) (1, x, )

<4% [1=PE)|E—Eu= | | 1—P(x)|dx

Sk41

such that &,,,~C/4 we have S,_<4df‘| 1—P(x)|dx. In the same way

1
S,«;4r£|l—P(x)|dx. i=2 3 4.

This implies (25). The mequalitg' (26) is proved analogously.
The inequalities (19, 20, 25, 26) imply

(27) 2 |c,,|Ax,..4C( )" =1

(28) E‘ | €| lx,—x,|Ax,-,,2C’(g%)”—‘,
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Now we set m=2([2rn2¢/C]+1),

r=25((in( A2+ 421 Dy o)1),

Then the inequalities (27, 28) imply (8, 9, 10) and Lemma 1 gives a po-
sitive solution of the system (22). I'hus the Theorem is proved.

Corollary 1. Let the data set {x;, y}' 6 be x;=i/n, ¥;=fulx), i=0,1,
2,..., n, where fox)=|x—1/2%.sign(x—1/2), x € [0, 1] and 0<a<1. Taking
into account that A=0(n—°), B<n', C=n""', D=0(n*""), the Theorem im-
olies existence of a m. i. p. P such that deg P=O(n).

Corollary 2. Let the data set {x, y,}I , be x;=i/n, y,=(1+Inx;")7}
i=1,2,..., n and (xy y,)=(0, 0). Taking into account that A=O((Inn)~"),
B=n"', C=n"', D=0(n"'\n®n) the Theorem implies existence of a m.i.p. P
such that deg P=(nInlnn).
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