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NETWORK-NORM ERROR ESTIMATES
OF THE NUMERICAL SOLUTION
OF EVOLUTIONARY EQUATIONS

L. T. DECHEVSKI
Network-norm error estimates of integer and fractional order of convergence are deriv-

ed for a Cauchy boundary problem for some evolutionary equations. To this end a combined
technique using average moduli of smoothness and interpolation of Besov spaces is developed.

Consider the following Cauchy boundary problem for evolutionary equa-
tions:

0
5 W D= H (52, x, tulx, £)=0,

1) X €(—o0, 0)=R, 0<i<T <00,
u(x, 0)=f(x), x€R, fe L,R), 1=<p=co.
Here L, is defined as usually, with a norm |}f§|1,=(f|f(x) |P dx)'ie.
R

The differential operator /A is supposed to allow a unique representation
of the solution, which is to be denoted by G: u(x, £)=|[G(t) f)(x).

Problem (1) is being solved numerically via the approximating problem
(2) [1, 2, 10, 11, 12]. wyx, t+d) = 22;'.u,,(x+ah. f), a-integer / — finite, =1

with no loss of generality,
(2) uy(x, 0)= f(x),
x € p={xu: xy=pt, p=0, £1, +2,...},
teQu={tv:ty=vd, v=0, 1..., N, Nd=T},
h — step along x, d — step along £

Here ¢, and / may depend on x and £ The solution operator of (2) is
Gy(t) : up(x, t)=[Gy(t) f](x). The error operator is then £,=G,—G. All these
operators may depend on x as well as on £

A natural question arises: what must the properties of the operators G,
G, and the initial value f be, in order to ensure convergence of G,f to Gf in
a certain norm and of a certain order (fractional order of convergence is also
considered) ? This question is being treated in many works and the estimates,
obtained there, may be distinguished into two major types:

(i) Error estimates in integral L,-norms under the assumptions:

(a) stability in L, of the error operator

SERDICA Bulgaricae mathematicae publicationes. Vol. 12, 1986, p. 53—64



54 L. T. DECHEVSKI

(b) certain order of approximation for sufficiently smooth functions f (this
order is denoted by r:r>0).

These integral-norm estimates yield the functional spaces to which the
initial value should belong, in order to ensure a certain order of convergence
s: 0<s=r. (For such estimates v., e. g. [10, 11]).

(ii) When applying a concrete difference scheme, defined in the points of
a concrete network, the values of the initial value function f are supposed to
be known only in the points of the network and thus a discrete (network) norm
estimate is needed to ensure convergence of a certain order. Such estimates
have been made, e. g, in [1, 2]. They require, like the integral —norm ones:
a) stability (in discrete norms), b) approximation (in discrete norms) for suf-
ficiently smooth functions and, additionally, ¢) f has derivatives of certain order
which, as a rule, is higher than the necessary one for formulating the problem.

The purpose of the present work is to derive network-norm estima-
tes, requiring stability and approximation only, i. e. without the assumption of
additional smoothness of f. To this end a method is developed (v. also [I6, 18,
19]), which is rather general and can be applied to varied problems for error
estimation, not necessarily connected to differential equations, here considered.
The applications presented in this paper are restricted to the model evolutio-
nary problem (1, 2) with concrete, simple differential operators H only. The
method uses the following functional moduli and spaces:

A. Average moduli of smoothness. A local modulus of smoothness of -th
order to the point xis wy(f, x;8)=sup{|A}f(£)!: ¢, t+khe[ x— F—gv, X+ kg 1%

where, as usual,
A k
Ayf(t)= 20(—1)’”"' (m )f(t+mh), h>O0.
m=
The average modulus of smoothness of k-t2 order of f is defined by

wW(fi ), =l ol fy 5 8) |1, for f€ Ap where

Ay ={f: 1 flaps=IIf lle, + 5, f 3 8, < o, 80},
As far as we know, the average moduli were first considered in [3, 5]. Below
some of their properties are related (e. g., v. [4, 6, 7, 8, 9, 13, 14, 15, 17]).

Al. Monotonicity: 08,38, implies 7,(f; 8,)c,=T(f: 89)r,,
A2. Subadditivity : if f, g€ A, then

wW(f+8: 8, =S S)L’+fn( & ),
A3. Estimation of the higher order modulus by a lower order one
wW(fi 8), =20 \(fi8), k>

A4. Estimation of the average modulus of order & of the function via the
(k—l)-th integral modulus of smoothness of the ([-th derivative, 0=.l=2k—1,
k=2

w(fi O, sk Do, (S B,
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where the integral modulus ,(f; S)Lp is defined in R, as usually, by

Op(f5 8)r,= sup ([|Ar f(x)|Pdx)'?, 1=p=ce.
0=h=8s R

A5. T, (f3 M), =(2(A+ 1)1y f3 8, A>0.
Aﬁ.gmo ow(f; S)Lp=0 iff fis integrable in the Riemannian sense.
A7. lf+f€ W, (W, (R)) is the Sobolev space
WrR)={f: R—R, f, f" ¢ L, f—) ¢ ACR), m=1}
(AC(R) — the space of all absolutely continuous functions: R —R),
then ©,(f; 8)., =<8/ f Il

A8. If Vf< oo (Vs — the variation of f), then t,(f; 8).,=8VJ.

B. Besov spaces, interpolation and embedding results (the one-dimen-
sional case)

B R ={f: 1 Fllas =I1f 11, +( ] ¢, (f: 0, Y9 )7 < ool

where 1=p, g=co, O=s<r.
C. A — spaces (v. [13]) (for the one-dimensional case)

AR =1 1 =11l + (et s b)) " <o),
P

for the same p, ¢, S, as in B. Let us note [13], that for %<s<r. A;,

. _ 1 s
= B;,, (equivalence of norms), for O;ﬁsg»;, A SB.

D. The spaces M, 1=p=-o, of Fourier multipliers on L,R)
M,R)={p: p— tempered distribution, i‘p:[M’=,sup ”B‘f“L’<U°}. (We
s, =t
- » &
denote by ¢ or Fg) the Fourier transform of ¢ on R, and by ¢ or F(o)
the inverse Fourier transform of ¢ on R).
Here and henceforth every function f¢ L, is distinguished from its class

of equivalence and considered defined by a concrete value in every point of R.
et us consider the following two functional spaces:

I(Ey) = {f: R—R, || f”’ﬁ(:;.) <o},
where

11 gy = CE AL Ga)P )P € Ea(see ). 15 psces

BE)={f:R—R, I/ 7 g, <°oh
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oo h 1/p
W here ”f”TP T ( z ‘h Sup { |f(-f) l" X e [‘cll y Xp ' - ]}) *
(%n) 2 2
\“h p==—o00

For f€l2(%,) the operator Py is defined by
[P’:hf](x)=f(xu)- x € [xu—h/2, xy+h/2), p=0, +1,
For f(zﬁ(zh) the operator ﬁzh is defined by

(Pr, fl(x)=sup{|f(E)|. x. &€ [xu—h/2, xuth/2)}.

It is easy to realize that Py, is a linear operator and that [P;hf(. + ah)](x)
=[chf( )] (x+ak), a-integer.
Lemma 1. The following estimates hold :

a. ||| fll e,y =l fllt, |STfs By fEBEDN L.
b 11/ l7pmy— 1/ 12, |=120(f 5 A)ey fE WENNL,

Proof:
(a) For the proof of a. v. [16], Lemma 1.

) [1f 11700 =!1Pe, flle, S 1 f1le, + 1 Pe, f=IF1 1 2

w Xuth2
=0fll,+ (2 T pa! SUPLIS @) G €lxa — s Xt )1 f(0) | dx)e

w Xuth2

=11, +CE T s ((f @11 E€ln—g. xut 3} Pd0)

o Auth
Sl (E S Gl A=A Ee b G xk ) P

o Xuth2

s ” /”L’+ ( u-z—- p —‘-,"l/? ml(f- Xus h)’ dX)”’

SIS eyt el fs 2 5 e, + 1255 A,

An analogue of property A5, of the average moduli of smoothness for A-integ-
er is used (e. g. v. [4]) to yield the last inequality. The inequality ||/||,'
S ll7pq,) 1200 fi k)i, is evident.

The case p=co (with ess sup instead of an integral norm) can be proved si-
milarly. The lemma is proved.

Lemma 2. For every §¢R, 7{(2.)-74(}:.+ §) (with equivalence of norms),
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Proof: Evidently, for §,=&, (mod &), 7{(2,,-{-&,) =l~,';(2,,+§,) (equality of
norms) is fulfilled. Therefore, one may assume with no loss of generality that
Ee[ — —:'— —;). For two such §&,, &, the following holds:

sup {| f(£) |:£ ¢ [x,,—%+§‘, x..+—f;—+§,)}

<sup{|f(t)]:t¢€ [x,.—%+§,. x..+-;'— + &} + sup{|f(£)]: £€[Xu-sgnza—2)
——3—+§r Xu—szn(a.—c..+g"+§s)}-

X
where, as usual, sgn X=T3T x+0; sgn0=0.

it i i LT 02 |
Hence, it is easy to realize that —-| f”“f;(:,,ﬂ.) ’\‘“fl‘T;,’(:,H.) $2|fh7‘;'.“n+"

The lemma is proved. Let us consider the space A, x(R), 2#>0 fixed:
Apa®)={f: | fllagp=1flle,+0:(f5 B < o0, >0 fixed}.

Corollary I.(a) For every E¢R /2(Z,+E)= A, »R) (equivalence of norms
with constants independent of k). (b) For every A&,, #,>0, Ap» = Apn, (equi-
valence of norms with constants depending on #k,, 4,).

Proof: (a) is implied by

sup h!f(t)ISIf(x)Hm.(f.x:h)s3 sup [f(H!,

£ x4 ) tElx—7g. x+g)
which is easily yielded from the definition of ®(f, x; &). (b) is implied by pro-
perty A5, twice used, with A,-_-—:—: and L,:%‘. Note that for any 2>0 A,x

consists of the same functions as A, and in this sense /%%, +&)=A, for any
h>0, £ ¢ R. The corollary is proved.

Lemma 3. Assume that p ¢ S (Schwartz’ space), ¢ ¢ R, ¢#0.
(a) Let f¢ LyR), then,
1) oS llz,mscall o) w1 £ 1z on
(b) Let f¢ Ay R), then,

(e 1l iy s | 0 em 1S | apaems o

€4 Cp— abs. constants.
Proof: For the proof of (a) v.e. g. [10, 11]. It can also be proved simi-

larly to (b). (b) Note first, that if p¢S, then p¢S. Let 1:5p< oo,

10 g, = (L E R0 ) fx) )
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=( T h| Tt ] plctededn]e)s

k=—o0

oo

“( k[ e () fla—tat )

=(k=§—°° h! fw pt) (n)f(x,—gn)dn lp)l/p

= T 1) I E 2l fxe—en)|7)ran

€n)

= T 1o M1 g,

N\

I

TR @) f g dn =100 [ 1 g,

=c]| p\(/.) lwy | f HA,,,,.(R)-

In the proof we used the generalized Minkowski inequality and the fact tha

11l e

IR(E,+%) =/l TRE,
For p=co the proof is almost the same. The lemma is proved.

The next theorem is a useful generalization of a theorem of V. Popov
[6, 13].

Theorem 1 [16, 18, 19]. Let £ be a Lipschitz operator: A,—I(Z,)
with the properties:
() For every /, g€ A, || Ef—Egllp, scilf—8la o -

(B) For every fe W}, || Ef ||, <che(|| fll, 1 /21, ), r>0, where 0<o=r;
A (Ep) » P

¢,, ¢y do not depend on 4; h=1 (without loss of generality). Then for every
feA, 0<s=r,
VEf| p, =c(r cw € p) R[Sl +TLf3 —), ),
n(Ep) P I

os

and, hence, I Ef”lf(t,.)s c(r, ¢y, €y Pk :‘l/wlA;”.

Proof: It is similar to the proof of V.Popov for the case £-—~/—L (1 -
identity, L — arbitrary linear operator with properties similar to (A) and (B)).
A main fact here is the existence for any function f¢ L, of an intermediate
appproximating function f,, € W, (function of Steklov) (v., e. g, [4]). f,.» has
the following properties (f€ A, — the choice of 4, will be additionally spe-
cified):

(1) | fO)=f, n(x) | m 04 f, x5 2hy)
(“) “.,_]r.h: ”1,'511 (f- 2’21)[,'0
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(iii)  f,. €W and
1£), |, SeOhse(fs B, S=1, 2,00, 7

M=

Let for f¢ Ay frn be constructed. Then | Ef sz;(zp)é | E from ”’i“n’—'-
| Ef = Ef el ges -
Properties (B), (iii), (ii), A5 yield
| Efml g < (SN + U frm ) <eskUS, o, +1F o, + 1 Frm— 1)
< (1, N, HIF 1l +esr) =, (f n),)
=ch (| fllp, ey fin D He(DATAf5 h)y)
k=1 implies h°/" =k for c=r. Let h,=h°". Property (A), Lemma 2, Corole

lary 1, A5 now yield:
| Ef —Eon gy =il ~Foml =il f~Frmll,

=c(pyt L], 2h°")Lp;\ ci(r, pyo(f; h°")L’.
Hence, the following estimate holds:
VEf|l . =clr en e pXRCfl, +3Lf5 k7))
h(Ih) P P

o
-
=e(r, ¢y 3 Ph T If”A-r , O=s<r.
poo

Since, according to Corollary 1, Ap R coincides as a set with A,, the above

estimate holds for any f¢ A,. The theorem is proved.

Theorem 1 is valid for a bounded interval instead of R and a non-
uniform network, too. It is the main result used in obtaining network-norm
interpolation estimates in the following applications.

Application I. The parabolic equation of arbitrary order (v. [10, 11]). For

denotations, see (1, 2). In this case H(ad; X, t)=-%mi;,-; m>0, integer. Here

we may consider /=H(E)=E?". The operators G and G, are defined in the
network points (via Fourier multipliers):

G(vd) f = F~' (exp (—VvdH(-))) » f
Gy(vd) f = F~'(exp (—vdH,(-))) * f, where

@) Hn(ﬁh)'—‘-'n{#. where
e(hg) = Elr.e“'"‘. Ca | — constants (¢f. (2)), and

F(Gy(vd) FYE) = [e(RE)A(E) - (v [10]).
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\ge need the following definition in order to formulate further results
(v. [10)).

Let a=Fk| H(h)|=kh?", k>0 constant. (&) is said to be an approxima-
tion of H(E) of order s>0, if

(4) H,(&)—H(E)=h" | & ["**Q(AT),

where Q¢C=(A) with bounded derivatives in A and | Q(n)|=Q,>0 for neA
where A={n: 0</m |<g,}. The next theorem yields an integral-norm esti-
mate for this problem.

Theorem A. (v.[10]). Let the following conditions hold.
(1) Gy(t) is stable in L, (uniformly with respect to #).
(This condition contains the case L |cqo|=1+cd, ¢>0)

aft/
(i) H, is an approximation of /1 (see (4)) of order r>0. Then, || E, )],
P
ﬁch’l@f“’?s L t=vd=vkh*; v=0,1,...,N; 0=s=r. We shall prove the fol-
PW

lowir_xlg theorem.

) heorem 2. Let f¢A, and the following conditions hold :

(i) Gyt)is stable: A, ,—[2(Z,) (uniformly with respect to #).

(This contains also the case T |cq|<1+cd, ¢>0. See also Remark 1 below).

€7
(i) Condition (ii) of theorem A s fulfilled.
Then [16],

| Ex(t)f ",:(IA)S‘C"‘ I|f “A;”'
t=vkh®", O0<s<r.
Proof: We shall first check the conditions of theorem 1. Condition (i)

for G,(¢) coincides with condition (A) of theorem 1. For G(f) condition (i) is
implied by Lemma 3b. Let f¢ W;. r=1. Then, from Lemma 1,

(5 I En(t)fli,:(,h,sll Ehfl‘L’+tl(Ehf; h)Lp-

Since f¢ W, it is easy to check that G(£)f, Gy(f) f and, hence, E,(f)f belong

to the space W, and commute with 3':,: 2 [Ex#) f1.0x) = [Ext) f')(x)-
Therefore, property A7. of the average moduli implies

E S5 By SR EN o, =h I Enf),

Since r—1:=0 and f¢ W; fre W”;‘.
Theorem A. now implies for s==r and s=r—1, resp.

(®) VB, w111, Schllf],,
(M IELOS Ny, Sk IS s ek L f -

:‘.ch"‘(lI/lI,;+||f|!,;)=i‘2€h"‘ H/Hw;-
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Here we used that || ||, <[ f|l, +I/f|l, =Ifll,x and the embedding W W,
14 P [ 4 P
for r=1 (5), (6), (7) now yield || E0)f g, S 1f lgr+i2eh- B f gy
=3ch" || f|| - Therefore, condition (B) of theorem 1 is fulfilled and theorem 1
holds. Apply‘i,ng it yields
| Ei®f g S €1 € pY (| fll, +5f3 b)) -
h'=p p P

The theorem is proved.

Using theorem 2 and the properties of the average moduli of smoothness,

the following two corollaries can be easily proved.
Corollary 2. If f@¢L, 1=s<r, then

Ex(Df] By OWo,_(f: b) +1).

Corollary 3. If Vf6-D< oo, 1<s<r, then
|| Ep (t)flll: :O(h:—l+1/p):

The constants here are independent of 7.

Remark 1. It can be easily proved, that, since G, is defined as in (2),
condition (i) of theorem 2 is weaker than condition (i) of theorem A. It should
be only noted that Pz, commutes with all G, defined as in (2), because Py, is

linear and

@

[Pz, f(- +am)(x)=(Px, f(-))(x +ak), a — integer
(see the definition of Pr, and below). Hence, it is easy to see that
1Gx &) fll s = 1Pz, Gaflle, = 1Ga P, NI, scll Py Sl =cllfll g

Here we used that, if @€/(X,), then Py ¢¢L,; the commutation of Py, and G,
and condition (i) of theorem A.
Application 2. The hyperbolic equation of first order. Using the denota-

tions of (1), (2) and (3), we have H(%, x; t):ai.. i. e. H(E)=E, and a cor-
respondingly modified definition (4) with d=k|H(k) |=kh, k>0.
The following integral-norm estimate holds.

Theorem B. (v. [11]). Let the conditions of theorem A. be fulfilled
(for G(t), corresponding to H(E)=E). Then

| Ex2) f |, Schmﬂflaa , Oss<r+l.
» poe

The followlng network-norm estimate holds.
Theorem 3. Let f€A, and the conditions of theorem 2 hold (with
theorem B instead of theorem A)

Then, || Ex(Of |y SR 1S5 -

"{“A’
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Proof: We shall consider two cases: 0<s=r and 1<s<r+1.(1)0=s=<r.
The proof here is analogous to theorem 2. Let us first check the conditions of
theorem 1. Condition (i) for G,(¢) coincides with condition A of theorem I.
G(t) f for the concrete problem has a simple representation: [G(¢£) f](x)= f(x+1).
Hence, it is easy to see that G(¢) satisfies (uniformly with respect to ¢) the
condition (A) of theorem 1 (f¢€A,):

| | I —
LY P e VA s

Let fe W7, r=1. Then, from Lemma I, ||E,,(t)f;j1,,(r )gllE,,f“,_ +t(Exfi k), -
h P P
Since f¢ W7, it is easily checked that E,(#) f¢ W, "and [E) f1Ux)=EW®) f1(x).
Hence, t,(E,f; ), =h| Eyf e,
Hence, by Theorem B and some embedding results, already mentioned in
Theorem 1, we obtain

re (r-_'l)r

IEAOS Nl gy = ch™" 1 f Iy + 26k - K Sl

Hence, 2#<-1 and l+(:::)’> ;% for r>1 imply

r”

IENOS 1 g, = 3K fll

Hence, theorem 1 holds, with o=7r%/(r+1).
Applying theorem 1 yields

| ENOS g = Cu x PXAT ISl +5 A1 h;“),,’)

s _
=c(r, ¢y Cq P)h ’+l“f“,,;°.v O=s=r.
Case (1) is proved.
(2) 1<s<r+1. Since the conditions of theorem B hold and, evidently, fe W',

we may obtain
|EnSll gz, = Enflly, +tolEnfs By S EMSN, +RIES ||,

sr l+(-'-‘|)’ sr
. rel ry ’ < r+1 1l
=ch™t ”/“a;w+h Il ”,,;;l =k ( ”f”,,;‘_ +IIf Il,,;_l)-
since k<1 and - <14+ 1<s<r+ 1,721 We shall estimate || f'|
8 € — ’+l r+1 v F ot L $ S d | ”;-I

by means of Hfjl”. :
’-A
[ gor=]|lS" =+ :
I Ug =1l +  Sup - =" oy (3 8), )

SN+ 1)+ Sl + o jsup =+ orn(fs O )= Sllga+I1 11l



NETWORK-NORM ERROR ESTIMATES . .. 63
Since s>1, B; =W, holds. This implies [f’[ s_1=¢’ HfHBs and, hence,
poo P

s 7
l] E, f”lx(zh)éc'}l r+1 If ”B‘ , l<s<r+1.

Case (2) is proved. It remains to note that when s¢(1, 7] — the common
interval for both cases (1) and (2), the estimates of case (1) and (2) are equi-
valent, since A; =B; (equivalence of norms) for s>1/p (see the defini-

tion C. of the A-spaces). This allows us to write

r
&
” E"(t)f“lﬁ(zmg ‘(r' Clv Cﬂ’ p)h i llf‘IA;”'

The theorem is proved.

Theorem 3 and some of the properties of the average moduli of smooth-
ness now easily imply:

Corollary 4. If f®¢L, 1<=s<r+1, then

| ENOS | g = O ™ @y (f; ), +10).

a(Ep)
Corollay 5. If Vf* D<o, 1=s=r, then

sr

I Ex@®fll,1, =0 ™).
h(th)

Finally, we should like to illustrate the difference between estimates in
theorems A. and B., and those in theorems 2 and 3, respectively. We shall
consider the following lemma (the uniformity of the network is essential in
this lemma).

Lemma 4. Let feL, l=p=co. Then

1 h2
”fllL’(R)= ( “h _.L/’l:f“’ )dt)”’. lSpS oo

1z, +8
"fllL_',(l)"_—' l(T-s-s_iup—"_) | f"l;’(:h‘.'{)' P = oo,
2’ 2

Proof: Consider the case 1<=p<co.
T | rd E xﬁ%

,’ = —

I£12 = |Ax)Pdx= T ) 1, |fb dx.

Ry

For every k: k=0, +1,... the variable x is being replaced by &: x=x,+§.

We obtain
A2

111 w=,E _ I, fna+Opdt

a2 E d 1 M .
- LCE U Grand = sl | d

The proof for p= o is almost the same. The lemma is proved.
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Lemma 4 shows that the estimates of theorems A. and B. can be repre-
sented in the following way (¢(z) — a linear function of ).
1

1 A2 . 3
(5 [ VERSIIP de)? <ch*||fll p » 1=p<ee
~hr2 H(E,+8) Bpeo
(for p=coo — analogously). From here it can be seen that these estimates are,

in a way, mean values of network-norm estimates requiring data about f
on X,+§& for almost every &([— L R ) In the case of theorems 3. and 4.

2 2
the corresponding estimates are of the form:
| Ehf”,i(xh)é“h"(’) If “A;“-

They require data about fon X, only and, thus, are suitable for deriving a
priori estimates of the error for a concrete difference scheme, defined on a

concrete X,.
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