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A NEW NONPARAMETRIC INDEPENDENCE TEST

A. FASSO, F. PESARIN

) blll is proposed a new nonparametric test for independance of two continuous random
variables.

The test is shown to be consistent against a subset o the first and the second order
regression alternatives. i. e. alternatives belonging to a well defined subset Q, of the con-
tinuous random variables for which at least one of the quaatities £(Y ' X), E(X|Y), Var (Y | X)
Var (X | Y) is, with positive probability, not constant.

Moreover, it is shown that when the parent distribution is a bivariate normal, the test
proposed is asymptotically equivalent to the usual one based on the sample correlation coeffi-
cient having Bahadur's ARE equal to one.

1. Introduction. Several nonparametric tests for independence of two
continuous random variables (r. v. ’s) are available in the literature. Some of
them are based on linear rank statistics, for instance the Spearman rank corre-
lation coefficient or the Fisher-Yates normal-scores correlation coefficient; for
a full discussion see Hajek and Siddk [15].

Others are based on nonlinear rank statistics, for instance the well-known
Kendall’s tau, theCucconi’s [7] mean square successive differences of ranks,
the Hoeffding's [16] D-statistic. or the Deheuvels’[10] Kolmogorov-Smir-
nov type statistic.

Bell and Doksum [3],studied systematically distribution free tests of inde-
pendence. Pesarin [18), proposed a test for first and second order regression
alternatives, i. e. alternatives for which at least one of the quantities £ Y |X),
E(X|Y), Var(Y|X), Var(X|Y) is not constant.

In this paper, following the approachof [Pesarin 18], the asymptotic be-
haviour of an independence test is studied over a well defined subset Q of
the continuous bivariate r. v.'s.

2. The Random Normal Ranks. The solution discussed here is based on
the replacement of the original data by means of random normal ranks (r. n.
r. 's), first introduced by Bell and Doksum [4].

To define this randomized ranks, let us consider a sample (X, Y)),
i=1,....n from a bivariate continuous distribution; let X{/) be the i-th or-
dered value in the increasing arrangement of the X’s, and let Y[i] be the
concomitant of X{(/), that is the Y value paired with X{(#). Symmetrically, with
the incrcasing arrangement of the Y’s, let X[i| be the concomitant of Y(i).

Furthermore, let R;=R(Y[{]) be the rank of Y[i], that is the position of
Y[i] in the increasing arrangement of ¥[1], ..., Y[n]; analogously let R} = R(X]i]).
Asymptotic properties of concomitants and their ranks are studied from diffe-
rent points of view by DavidandGalambos[9), Bhattacharya [6),Sen
[20,21) and Fasso [13, 14].
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Let us consider, apart, two independent simple random samples S, ..., S,
and S;,...,S, from a standard normal distribution; let S(1)—---—=8(n) and
S'(1)<---=8'(n) be the related order statistics.

The randomized transformation: Y[i]->S(R,) is here named i-th random
normal rank of the concomitant Y[i]; S"(R’) is defined similarly.

As shown by Bell and Doksum [4] when X and Y are independent, the
r. n. r. ’s S(R,) are independent and identically r. v. 's with standard normal
distribution.

3. The Bell and Doksum statistic inthe subset Q. Bell and Doksum
[4, 5] suggested, for testing independence, the randomized sample covariance

W SRS =, SRS

Its exact null distribution is as the difference of two independent chi
square with n degrees of freedom (seeBell& Do ksum,[4], theorem 5.1). More-
over, the test based on W’ has the folowing remarkable property : its Pit-
man’s asymptotic relative efficiency (ARE) is one with respect to that one
based on the usual sample correlation coefficient 7, when the parent distribu-
tion is a bivariate normal. So it is asymptotically equivalent to the optimum
solution in the normal case. In the present context we prefer the slight modi-
fication of W’ defined by W= (1/n)ES(R)®'(i/(n+1)) where @' is the in-
verse of the standard normal distribution function.

In order to study the consistency of the modified Bell & Doksum test, as
well as those considered in the following sections, we need to define a subset
Q of the continuous bivariate r. v. 's. For this let us consider, first, the follow-
ing “regularity” definition:

Def. 3.1. A function g: R*=R is called regular (with respect to the
measures Py and Py) iff it satisfies the following continuity conditions :
i)g (., z) is Py-a. s. continuous, for Pyalmost every fixed z¢R;

ii)y Pg(x, )=c|=0, yceR, for Pyalmost every fixed x¢R.
We are now ready to define Q.

Def. 3.2. A bivariate continuous r.v. (X, Y) is a member of Q ify
there exist two regular functions g, £: R?*-R and two continuous r. v.'s
U, and U,, for which:

i) Y’-‘-g“x. Ul)v
i) X=g(Y, Uy
where X and U, are independent, as well as Y and U,.

Equivalently, the set Q can be defined by means of continuity conditions
on the conditional distributions Fyx(y, x)=P(Y..y| X x) and Fxy.

Def. 3.3. A bivariate continuous r. v. (X, Y) is a member of Q iff:

i)y Fyx(y,.) is Py-a. s. continuous, y fixed y¢R;
i) Frix(-,x) is continuous for Py-almost every fixed x¢R,
i) Fxyy(x,.) is Py-a. s. continuous, y fixed x¢R, and
v) Fxy(.,y) is continuous for Pyalmost every fixed y ¢ R.
The proof of the equivalence of the two definitions is ommitted because im-
mediate,
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It’s now useful to note that:

Theorem 3.1. /f (X, Y)€Q, then both W' and W converge in prob-
ability to cov (Z(X), Z(Y)) as n—, where Z(X)=® 1o Fy(X), Z(Y)=01
o FU{Y) and ® is the standard normal distribution function.

For the proof see Fasso, [13], p. 79, art. 1.

Hence it is easy to see that the Bell and Doksum test is not consistent
for certain nonmonotonic regression alternatives.

4. First order regression alternatives. Let us consider the elements of
Q for which the conditional r.v.’s (Y| X=x, x¢R), are stochastically ordinable
in some sense, at least for x in some Py-non-null set. To be more precise,
let us consider the following generalized regression model:

Def. 41. Y=g(X, U) where (X, V)¢ Q and there exist disjoint and
Px-non-null sets: E,, Ey for which., x¢E,, y¢E,, imply that:

i) either g(x,.)=g(y..)Py-a.s. or
i) g(x,.) =g(y,.)Pya. s,

both with strong inequality over a P,-non-null set.

For example: Y=m(X)+U, with m(.) Py-a. s. continuous, is a genera-
lized omoschedastic regression model, being E(Y | X)=m(X)+a and Var (Y| X)
=b; moreover, it satisfies the conditions of Def. 4.1 if Py(m(.)=c)<1, wcéR.

To test independence against regression of Y over X given by Def. 4.1,
consider the sample autocorrelation coefficient of the r.n.r.’s S(R)

n—1
T,= ,,1_1 'E‘ SIR)S(R +1)-

Under the null hypothesis, 7', is asymptotically normal* with zero mean
and variance _n‘:l,; the proof is a particular case of theorem 6.1.

Rema k. The normal approximation is likely to be good even for small
sample size, because ET*=0y odd 4.

Furthermore, in Fass o ([13), p. 67, art. 1)is proved that 7, converges in
probability to Var(E(Z(Y)| X)) as n—co, when (X, Y)¢€ Q and Z(Y)=® 1o F(Y).
Finally, the test based on the large significant values of 7, is consistent aga-
inst the set of alternatives given by Def. 4.1, because of the following theorem.

Theorem 4.1. Under the conditions of Def. 4.1, Var(E(Z(Y)| X)) is
strictly positive.

Proof. It is sufficient to show that E(Z|X=x))+E(Z|X=x,)v x,€E,
where £, i—1, 2 are given in Def. 4.1. Let N be the set of the points where
F, is constant, obviously Py{N)=0. Let B=B8B(x,, x;), x;€ E,, be any Pynon-
null set such that
i) &(t)>g(t), LB, where g[(t)=g(x, ).

The existence of such a set B is ensured by Def. 41. Noting that ® is an
increasing function, and Py(£,)>0, it is sufficient that

i) (i) implies Fyo g (£)>Fye gu(t), t€8’, for some Py-non-null B’

Now let us suppose, ab absurdo, that

ifi) Fyoge(.) -‘Fy-vg.,(.)PU-a. S.

* By the statement: 7, is asymptotically normal with mean p, and variance °3-W¢ mean

that (7, —mn,)/o, converges in law to a normal r. v. with zero mean and variance one, as
n s 0,
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We have that (iii) and (i) imply g.(f)¢N, g., ()¢ N when £¢B. Furthermore,
Pig(U)eN, g (U)eN, U¢B)=P(g.(U)¢N). By cefirition, the right hand side
is equal to P(YeN|X=x,) and this is zero for P-almost every x, because
O=Py(N)— [ P(Y ¢ N| X)dPy. Hence (ii) is true and the conclusion follows. QED

Therefore, the test based on 7, is a more general independence test
than the Bell and Doksum’s one. Nevertheless it has a local lack of efficiency.

In fact, if the parent Cdistribution is a bivariate normal, the ARE (both
the Pitman’s one and the approximate Bahadur’s one [2, 3]) of 7, with respect
to the sample correlation coefficient 7 is zero. So with large normal samples
7, need infinitely more observations than 7 to have the same power.

To obtain a test both consistent and locally asymptotically efficient, let
us consider both statistics W and 7,. For this let D=max(T,, T,), where

To=| W| n—"_l— . The null distribution of D is asymptotically the same of the

maximum between a normal r. v, with zero mean and variance %, and the
absolute value of another independent normal, with zero mean and variance
G the proof is a particular case of theorem 6.1.

Obviously the limit in probability of 2 is strictly positive iff Var[E(Z] X)]
~ 0, and the test based on large significant values of D, is consistent against’
alternatives given by Def. 4.1.

If the parent distribution is a bivariate normal with correlation coefficient
p. then £) converges in probability to [p|; furthermore the Bahadur’s-large
deviations condition is satisfied being In[1—®(x)(2®(x)—1)]=In[(1 —d(x)X!1

2
+2®(x))] = — "2 (14 0(1)). Hence the local* Bahadur’s ARE of /) with respect

to r is one; in other words, to test p-=0 against p*+0, 0 is asymptotically
locally equivalent to the optimum unbiased solution in the normal case.

5. Second order regression aiternatives. To describe the nonconstant
conditional variability, let us consider a generalized regression model, for
which the deviations of the r.v.’s (V| .X=x), x¢R, from a median value §
of ¥ have the same sign and are stochastically discriminable, in absolute value,
at least for x in some non-null set. To be more precise, let us consider the
following second order regression model:

Def. 5.1. Y=g(X, U), where (X, Y)€Q, and there exist disjoint and
Py-non-null sets C,, Cy, and a median value & of Y, for which: x¢C,, y¢C,
imply
i) (glx, )—ENg(y..)—8)=0 Pya. s.; moreover for the above wvalues
ii) either | g(x,.)—&|= gy, .)—E&|Pya.s.

iii)y or | g(x,.)—&|=|8&(¥ .) &| Pya.s, both (i) and (iii) hold with strong
inequality over a Pynon-null set.

For example, YV —=o(X)U+§, where o is a Py-a.s. continuous and nonzero
function,  symmetric about zero, is a regular second order regression model,
such that Var (Y| X)=a o*X). In this model the regression functions E(Y|.X)
and E(Z(Y)|X) are constant and the test based on 7 is not consistent.

Note that, in this model, E(Z(Y ) X)=1 a. s iff o(X)=c a.s. for some
ceR, In general the following theorem holds.

* We call “local” Bahadur's ARE the limit of the approximate Bahadur's ARE w(p) as
p--O. sce ['2].
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Theorem 5.1. Under the -conditions of Def. 5. the quantity
V_a;r[E(Z* X)) =E{E(Z? X)—-1P}=EEXZ2| X)|—1, Z=2Z(Y), is strictly po-
sitive.

Proof. Def. 5.1 implies that, y fixed x¢C,, y€C,, there exist disjoint
sets A, and A, with Py (A, or A,)=1 such that

g(f)—E5=g,(t)—E=0, {¢A,,

E—Z)=E—g(t)=0, tecA,;
in other words

}:)'ogx(t)g Fyog)’(t) = 1 ‘(2’ tE Ap
Fyog)=Fyogy(t)<1/2, t¢A..

Hence one has [®'oFpeg (. )P =[® oF0g,(.)]* Py a. s. and the proof is
thus concluded in a very similar way as in theorem 4.1. QED

Thus we can use T;:TI—T Z(SR)P—1US(R,+,)2—1), with large signifi-
cant values, to obtain a test consistent against (5.1). In fact, under H,, T is
asymptotically normal distributed with mean zero and variance 4/n, and, in Q,
is a consistent estimator of Var(£(Z?|X)). The normality follows as a parti-
cular case of theorem (6.1); the convergence in probability is proved similarly
to that of 7, if one notes that E(S*)< > for every integer X.

6. The test against first and second order regression alternatives.

Until now alternatives of first and second regression have been considered
separately. To combine them, let us consider the following generalized regres-
sion model:

Def. 6.1. Y=g(X, U =g(X, U)+g(X, U), (X, Y)cQ, where the regu-
lar functions g, and g, satisfy the conditions of Def.,’s 4.1 and 5.1 respecti-
vely, under the additional condition that the sets £, Ey and C,, C,, are all
disjoint and such that at least one pair is Py-non-null i e.

Py(E))Py(Eg)+ Px(C)Px(Cq)>0.

Remark. Such a definition don’t exclude completely a regular first and
second order regression model like

(6.2) Y =m(X)+ o(X)U

with E(Y | X)=m(X) and Var (Y| X)=0%X) < two independent functions, bu
Def. 6.1 restricts the domain of such combined regression to a set with Py«<1.
More clearly, Def. 6.1 requires that in (6.2) there exist a Py-non-null set A
such that, if x¢A, then m(x) is not constant and o(x)=o0, or o(x) is not con-
stant and m(x)=0.

Let us consider now the set Q,=Q of the bivariate r. v. 's such that
Y=g(X, U) is given by Def. 6.1, and analogously X'=g'(¥, U’), where g’ sa-
tisfies the regression conditions corresponding to Def. 6.1,

In order to obtain a test consistent against Q, one can procecde as
follows: Draw two independent auxiliary random samples S,,..., S, and
S, ...,S, from the standard normal distribution, Calculate from the actual

data (X, Y,). i=1,...,n the ranks R, and R, of the concomitants Y[{] ’s and
X[{) 's, respectively. Then calculate
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T—=max[T; i=0,...,4]

where T, and 7, are as in section 4,
1 N O Y
Ty= n—1 s (R,)S (Ri+l)'

Ty =g (SR = ISR P—1)=T3/2

Te gy (SR — XS R, —1)

where summations range over i=1,...,n—1.

If Vi1 T >ke. with kg such that C(ka)=®(ka)'[2®(ka)—1]=1—a, then
reject the null hypothesis.

In fact, under H,, T is asymptotically the maximum among four indepen-

dent normal r. v. ’s, with zero mean and variance (!/2—1), and the absolute

value of another independent normal with zero mean and variance n/(n—1)>?
as it is stated in the following theorem.
Theorem 6.1. PWn—1T=x|Hy)—G(x)=®(x)20(x)—1] as n—co.
Proof. By Bell and Doksum’s theorem it follows that, under /,, S(R,),
e SR, SR, ... S'(R)) are distributed as Sy Sp Sph-- ., S, Hence,
putting 7= (n/(n—1))W, we can write

(n—1)T*=(n— 1)/&l a,T,

n—1
- 1:. (@1S:Si+1+ agS;S;, +(ay/2)(ST—1)(S,, — 1)
+(@f2XSP— 1) S2, = D)+ S @i (n+1))]+0,(n'?)

n-1
=X An.l + o’(nlﬂ)
1

=

say, intending equality in distribution.

Using the central limit theorem for triangular arrays (see [1], p. 349), we
can easily extend the Diananda’s theorem for stationary m-dependent sequen-
ces (see [12]) to include {A,,} which is l-dependent but not stationary, and

conclude that nT* (:En E(A2 )'? is asymptotically normal for every a,, ..., ag

not all zero. Furthermore, note that E(7,)=0 and E(T,T;,) =0 for every i+j
l1,..., 5 Hence n'*(T,, ..., Ty) is asymptotically jointly normal with inde-
pendent components. The conclusion follows noting that G(.) is the distribu-
tion function of the maximum among 4 independent standard normal r.v.'s and the
absolute value of another independent standard normal variable. QED
The test based on T-=max [T, ..., T, is consistent against Q\) because,
4 )n

from sections 3 to 5 T converges vln robability to max kcov Z( Z(M)|
| '
Var [E(Z(Y)| X)) Var[EZ(x)| v)), VHEEDELX0 VadBZXE 0N i (X, Qs

and this quantity is strictly positive when (X, Y)¢Q,.
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Finally note that the Bahadur’s large deviations condition is satisfied by
the distribution function G(.), and In[1—G(x)]=—-5- (1 +0(1) as x—ce.
Hence if (X, V) is bivariate normal r. v. then the local Bahadur’s ARE of T
with respect to unbiased optimum solution || is one.

7. Conclusion. We have obtained a randomized test consistent against
the wide non usually parametrized set of alternatives Q,.

From a practical point of view a question of interest is wheter one can

obtain approximate or equivalent solutions using scores like ®—!( Ry ) or

n+1
E(S(R)) | R;) instead of r. n. r’s S(R).

Bell& Doksum [5] proved that W”and W*=E(W|Ry, ..., Ru Ry ... R)
are asymptotically equivalent in the sense that nE{(W”— W*)?| H,] -0 as n—co.
Hence W” and W* have the same asymptotic null distribution as well as the
same set of consistency and ARE.

The problem of finding a normal scores test against Q, will be studied in
a forthcoming paper of Fasso.

Thus it will be apparent the value of r.n.r. ’s procedures in providing
good tools to find approximate and asymptotic distribution of normal scores
procedures.
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