Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



ON THE THIRD BOUNDARY VALUE PROBLEM
FOR A FULLY NONLINEAR CONVEX ELLIPTIC EQUATION
IN TWO VARIABLES

JANA D. MADJAROVA
The paper considers the third boundary value problem for a fully nonlinear convex se-

cond order elliptic equation. Using Bernstein’s meth)d of a priori bounds, a theorem of Niren-
berg for equations in two variables and the method of continuity a unique solution is proved

to exist, belonging to C*%Q), Q=R

1. Introduction. Let Q be a bounded domain in R? dQ¢C% Consider the

problem
(1) | f(D*)+g(x, u. Du)=0 .
(2) | (0wt +0(x)2) s =0 X y

where 22z and Du denote as usually the Hessian matrix, resp. the gradient
of u, and v the inner normal to 0Q; we shall also use the notation d, instead
of d/dv. We shall suppose that the above problem (1)—(2)satisfiesthe follow-
ing conditions:

1) f€ CYRY), f(0)=0, o¢C¥R?), geCHR? ‘RR2)

2) The equation is uniformly elliptic, i. e.

®) 01ers 3 SANRYSOIER, vreRs LRy

where f,,=0f/dr,;=f;and 0<0=0<co.

3) The functions r—o{(r), r¢RY and p— g(x, 2, p), peR? ((x, 2) denotes
an arbitrary point in R?<R), are convex.

According to the smoothness, the convexity is equivalent to the inequa-

lities
) 3, JuadPRENZ0, v reRS, R,

(5) S g o0 2 pPEE/ =0, wxeR?, z¢R, peR?, LR
"/

4) The functions g and o satisfy the following inequalities:
(i) @le 2, p)=—n<0; (i) ofx)= —8<0;
(ili) max | g, (%, 2 p)|=sGK): i=1, 2;

At
|2/ EK

(iv) max| g, (x, 2 p)| SG+G|pl, G=0(K); k=1, 2

xf l)_
|#| =K
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During the past few years many mathematicians have actively studied the
fully nonlinear elliptic equations. In [1] E v ansconsiders Dirichlet’s problem
for the » — dimensional equation f(D%:)-=0 for convex f and proves existence
and uniqueness of a solution belonging to C>*(Q) C(Q), Q =R". Similar results
were published by N. Trudinger [2]forthe more general equation R[4,
Du, u, x)—0, where F satisfies some natural structure conditions. The paper [3]
treats Dirichlet’s problem for the two-dimensional equation (1) and establishes
existence and uniqueness of a solution in the class C*%Q), Q=R 0<a<l.

The main result of this paper is contained in the following.

Theorem 1. Under assumptions 1)-4) the considered problem (1)-(2)
has a unique solution belonging to the class C**(Q), 0<a<l.

The main tools used are DBernstein’s method of a priori bounds, a result
of L. Nirenberg for equations in two variables and the method of continuity.

2. A priori estimates. Further we shall often use the equivalent form of
equation (1)

2 2
(6) z a‘/(D“‘u)u”I.+ ¥ bi(x, u, Duyu, +c(x, u)u+glx, 0, 0)=0,
[ 1 ! =l !

{

<

where l
(i) a/(D%u) ~S{f,,(tD‘3u)dt.

(7 (i)  bix, u, Du) -=0;‘g,,‘(x. u, tDu)dt,

1
(iii) c(x, w)= [ gAx, tu, 0)dt.

Lemma 1. /f u¢CXQ) is a solution of (1)-(2), then
max |u|<=M,
a

where M= M(0, ©, n, 3, max/|g(x, 0, 0))).
a
Proof. Set z,(x)=u?x)—N
and
Lv }.‘a'/(D’u)'v,‘,/+-2 b'(x, u, Duyv, +c(x, u)v,
then on dQ we have
0z, + 0z, = 2u0u+ o(x ) —o(x)N
2u(0u+ o(x)u)—o(x? - o(x)N 0—o(x)u?—o(x)N -0+0+6N=>1

for N large enough. This means that z, can have no positive maximum at any
point x ¢ 0Q.
To prove that z, has no positive maximum in Q we shall show that

Lzy>1

for NV large enough. Slmple computations give
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Lzy=2% a"f(D’a)u,‘_u,iJ:-?uEa"/(D’u)u,‘_,l_ +2u X bi(x, u, Da)a,‘_+cu’—d\/
=23 a"/'(Dﬂu)uxiu,i +2ulu—cu?—cN
=20|Du |?+2ulu—cu—cN=20|Du|?—2ug (x,0,0)—cu—cN
~20|Dul2—(e2) u?— cu® —(2/e)g¥(x, 0, 0)—cN
- —(c+¢e/2u2—(2/8)g%(x, 0, 0)—cN=—(2/e)gx, 0, 0) —cN>1
for N large enough, i.e. z,==0 in Q and hence u#?<=N in Q. For M=N'2
this inequality gives us
max |z |= M.
Q
Lemma 2. Let u¢C¥Q) be a solution of (1)-(2). Then for any domain
Q' —=Q we have
max | Du |<M;,
o

where M, =M, (0, ©, n, 5, M, GIM), Q').
Proof. We use the auxiliary function
w(x)= | Du |+ Mu+ M)+ N, |x]2,

where {¢Cy(Q). For large enough constants N, N, @ has no maximum at
any inner point; as {-=0 on the boundary this yields an estimate for |Du| in
any domain Q' < Q. The computations differ only slightly from those in [3].
The terms containing derivatives of { contain lower order derivatives of u
than the others and thus mean no additional problem.
Lemma 3. /f u¢CYQ) is a solution of (1)-(2), then there exists a
constant
C=C(0, ©, n, 8, M, max|Du|)
a

and such that
max | D% |=C+max | D%|.
a o

Proof. The proof is contained in [3].
To achieve estimates for max|Du| and m:I‘(ID’ul we shall transform the

Q
domain Q onto a disc. If Q is simply connected, according to Riemann’s
theorem, it is conformly equivalent to a disc. To estimate the derivatives of
the solution close to the boundary we shall consider the transformed equation

(8) f(D, Du, y)+ g(y, u, Du)=0

in a crown close to the boundary S of the disc. (All functions are considered
in the new variables but denoted by the same letters as before.) Without loss
of generality we can choose y,=¢ to be the angular variable and y,=p — the
radial one. The boundary condition is thus transformed in

(up—o( yW)|s=0, o(y)=—8<0.
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If Q is not simply connected, all components of the boundary are treated
similarly, i. e. we transform them into boundaries of discs and consider crowns
close to them. For the inner componentsof the boundary the boundary condi-
tion is transformed in

(#p+o(y)s,=0, ofy)=—8<0.
The transformed function f(r, ¢, y) has the following properties:
(i) £, 0, y)=0;
9 (i) the derivatives f,, k&, /=1, 2, are bounded ;
(iii) the derivatives f,,, k-1, 2, are bounded;
(iv) the derivatives f, and f, have linear growth with respect to

the second derivatives of the solution.
We are now ready to proceed with the proofs of the bounds for max|Du|
Q
and max|/% . We shall consider a simply connected domain Q. According
o2
to the above arguments this means no loss of generality. Let B={0-p<R}
be the disc, conformly equivalent to Q and S=08={p=R}.

lLLemma 4. et ueCHQ) be asolution of (1)-(2). Then for N, N, N,
large enough the function

z,( V)= Du?—20( y)iu,+ Nu?+ Nop?— N,
has no positive maximum in the set
V={R—e<p=R}
Proof. If z, achieves a maximum at an inner point y, of V, then

2
z 0
IJulfl/z'y“yI(yO)<

because of the ellipticity.
Simple computations using the ellipticity give

x 208 u PH2NOS|u, P +2NuSf uy,, +2 3 fu
.//uz"t’/ :,.’ Yk | P | l-;fll T St oy,
Y P . S N
—20u f‘;f’/ yy0— Zuu,‘.‘:/f./oy,y, - 4”;"‘/‘.,‘/0}‘"’/— 4u’.‘;f,,a,‘u,/,
- 20!4.'.‘3],/1,‘,', —4c Bflﬂy,”},o +2Nofaa

The further arguments are similar to those used in [3] to establish the
bounds for the first derivatives. We get
o - S \ ¢ 3l v. )
21t =20 2t P IO i, 2o ok INUE st 2  fit
—20u l:/‘,a,‘n,—-C’ |a?—=C" | Du|* —(1/n)C""" | Du P—uCVE|u,, .
i ‘“ /
The differentiated equation gives
’5 Skt ypt !l;/c,”y‘o +/,+§ 8oty + Bulto+ Bp =0

and consequently
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Iiij,,u,u,‘_,ip |<C|Du||D%|+C|Du?

as f, has linear growth with respect to the second derivatives. After the polar
change of variables the function f may not be convex any longer so after
choosing NV large enough we now have to use the inequality

| 2Nu :"Jlf,.,ay‘,,'_ [=(N2a2)p’ +p | E’,f’ﬂ’t’i 2
with small enough p’.
It is now obvious that suitable choice of constants provides
Ef 4Z1y,;>0.
What remains is to prove that z; has no positive maximum at any point
belonging to {p=R}.
On S we have u,=ou and consequently
—0p21+02) = — 2Upllpp— 2 gllgy + 206,11,
+20u? + 20uipy — 2Nuwit, + ol + ol — 262, + o Nu? — o Ny, — 2Nep + 6N p?
= —2ty(ou)e + 20,u(cn )+ 20(ou)® —2Nu(ou)
+ o(ou)? +oul—2c%(ou) +oNu? —oV;—2N,R+0oN,R?
= —20qlilly— 0u? +200,u* —oNu? + 6%u? — N, — 2N,R + 0N, R?
s — | O | &YW —| O | WU2 —oul + 200,u — oNu + 0% — o N, — 2N R+ oN,R2.

The constant V, has already been determined. We can now choose the
remaining constants so that

—0pz,+02, -1 on §

and consequently z, has no positive maximum on § which completes the proof.
To find an estimate for max D% | we shall use a modification of a pro-
"

cedure described in [5]. -
Lemma 5. Let u¢ CY(Q) be a solution of (1)(2). Then

max | D% |=M,,
o
where My~ M0, ©, n, §, M, GIM), M,), MleIgI!]Du |
Proof. Differentiate the equation with respect to p and set v=u,—ou-
Then ©|8§5=0 and :
(10) FugVoot 2F oy Voo + Fuy Voo + Gliew, ooy Upp, ligw o U, @, p)=0,
where
(K“”o “.on “ppv u.’ aO’ ”' 0- P)'-‘F..VQ'FF.FO,'FF,V
+ Foglou)  +2F, (ou),, + F, (ou)  + F,(ou), +F, (ou), i F(cu)+F,.
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We set v=x(w). We then have
Vo=n"Wy, Up=2n"W,,
Vop =% Wep + R WeWp.
The function w satisfies the following equation
Wep+ Fy, W+ (WI0)F,, w2+ 2F,, WeWp+ Fup,@i]+G/x'=0.

“pp " pp PP P aep 490 " @

FupeWoot+2F,

dop
Choosing » so that »'>0, x"<.0 we can derive the inequality
Wep+ F,. Wpp=—(»"/x")0 | Dw|2—G'%'.

“pp

F,o Woo+2F,

Hop

We shall now estimate the growth of G. We know that the derivatives
of f (and hence of F) with respect to y, have linear growth with respect to
the second derivatives of u; the derivatives with respect to ue, u,, Ueq, Ugp,

u,,, are bounded.
From the definition of v it follows that lug,l, |[#pp| <C|Dv|+C, hence

|G|<C|Dv|+C|ug|+C.
We can write the equation in the equivalent form Ea"/uy'.,l.-}—---—:O,
o |+C,

as a'/ are bounded we get | tipe | =C |tgp | +C
i e.

|G|=C|Dv|+C=Cx?| Dw]+C.

We then have]

F, w_ +2F,

oo 09 lgp

Wep + Fy, Wop =—(®"/")0 | Dw 2—%'C | Dw ?*—C/x’.

upp
If we now in addition choose % so that
—(%"/%")0—Cx' =0, #(0)=0, e. g %(-)=(0/C)In(1+ "),
we get
v=(0/C)In(1+w), w=—1+e"?, w|S5=0,

Fuwww+2Fn.p'ww+ Fupo@op=—(C/n') == — C.
Set S, ={p=R—¢}, S={p=R}, n}axl'wi ={ and choose m such that

m>1l/(eR—eR-*),
Consider the function z=w+me®. On S, we have w+meR - [+ meR ¢
< meR—meR—*+ meR*=(w+me®)|g. On the other hand,

FroeZoe+2F, +Fy 2, C+mec°>()

oo™ o0 op zoﬂ Upp~pp
for m large enough. This means that d,z -0 on §, i. e. dyw g+ me® -0,
which gives us one-sided estimate for d,w and hence for d,v on §, i e.
0,v = —C.
To get an estimate of the form dyv= C we can use the auxiliary function
1—e €Mv_ e and argue as above. Hence

m:x[d'v/dpl-,/q.
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i. e. we achieved an estimate for u,,|;. The boundary condition and the equa-
tion supply estimates for the remaining second derivatives of u: ugy|s=(ou)els-

Together with Lemma 3 this gives us max|D%|<M,.
Q

Lemma 6. If u¢CYQ) is a solution of (1)-(2), then \u|, 5=C, where
C=C0, ©, n, 5, M, GIM), M,, My).

Proof. Since we consider the two-dimensional case only all we have
to do is apply a result of Nirenberg (Theorem 11.4 and further, [4], p. 247)
to the differentiated equation. The interior C'e-estimates for any first deri-
vative of the solution, i. e. the interior C*®-estimates for the solution itself are
a direct application of Theorem 11.4 [4] (see [3]). What remains is to establish
bounds for the Holder-coefficients of w4, 4o, and u,, near the boundary. To
achieve this we consider the solution v=uz,—ocu of the Dirichlet — problem
for (10). The theorem and the following remark, concerning global estimates,
yield a bound for |©|i. near the boundary. The Holder coefficient of the re-
maining second derivative of the solution, #y,, can be estimated using the
implicit function theorem as in [3]. Namely, the uniform ellipticity permits us
to express this derivative as a smooth function of the already estimated ones.
Thus we finally get

] u :2.0; {—lgc'

3. Existence of a solution. We can now establish the existence of a so-

lution to our problem using the method of continuity. Consider the problem

| 01 —M)Au+AF[u]=0
(Ot +ou)lsg=0, N

where A¢[0, 1], Flu]=f(D%)+g(x, u, Du)y=HRx, u, Du, D?z). We can now
proceed exactly as in [3], substituting the space B used there with the space

By = {u € C**(Q)/(0v + o) |aa =0}.

We shall go into no further details except remind that the proof of the fact

that the set of all A for which the above problem is solvable is relatively

open in [0, 1] uses the implicit function theorem in Banach spaces and the

solvability of the third boundary value problem for linear equations.
Uniqueness follows trivially from 4) (i), (ii).
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