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ON THE CONDITIONING OF MATRICES
BY SCALING

VLADIMIR POPOV

We give another argument for the wide spread opinion that the numerical properties of
matrices are improved by scalings which make the norms of the rows and columns of the
matrix approximately equal. Namely, we prove that non-singular matrices whose rows and
columns have equal /-norms are optimally scaled with respect to a complex condition measure.

The condition of a non-singular matrix A with respect to the linear pro-
blem Ax=b is defined as the sensibility of the solution vector x to errors in
the right hand side vector 6. A widely used measure of this sensibility is the
condition number A(A)=| A||.||A-'], which gives an upper bound for the
propagation of the relative error of & in the solution x (cf. [2]). A more refin-
ed tool for investigating the condition of a matrix A is its singular spectrum

6,=(0y,...,0,), 6,>--- -0, where o, are the square roots of the (always
positive) eigenvalues of AA7.c, has the following geometrical meaning: if
S,={x€R*|]| x||,= 1}, then oy,..., o, are the (lengths of the) semiaxes of the

ellipsoid A(S,).

Now let us have to solve Ax=0, b0, and let us have solved a perturb-
ed system Ax*-b* instead. If we know some upper bound for the relative
error in b p(b)=|b6*—b|y/||b]l;, we will be interested in the question how
jarge the relative error in x p(x)=| x*—x|q/| x|y might be.

Let x=A.x,, e=x*—x=p.e,, X, 6,€S,

Obviously
p(x)=p/h, p(b)=| Ae|ls/||Ax [la=p || Aey |ly/A || Ax, |

p(x)/p(b) = Axy |z /| Ae, la

Thus we see that the probability of having p(x)/p(b)=¢, 1=t=k(A) de-
pends on the distorsion of the ellipsoid A(S,), i. e. on the “dispersion” of O
(The worst case of (1) is |Ax,[,=0,, || Ae,|ly=0,. Then p(x)/p(b)- k(A)).

Now we are going to introduce a measure of the distorsion of A(S,) and
to prove that a scaling strategy is optimal with respect to this measure.

For x=(x,,...,x,), x,>0 let us denote:

12 1n
my(x)=(5 222, my(x)=+Ex, myx)=(Tlx)
w(x) = myx)/my(x)
Obviously w(x)=z1, and greater values of @(x) correspond to more “dis-
persed” x;-s. (In terms of the mean quadratic deviation: D(x)=X 'l'—(x,—m,(x))’
=mi(x)—mi(x) and thus D(x)/m}(x)<w¥(x)—1).

(1)
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For a non-singular matrix A we define: w(A)=w(c,), where o, de-
notes the singular spectrum of A.

To compute w(A) one need not know the singular spectrum o, because
of the following equalities:

) my(G ) =(~ Za? %

1|n

3) my(c,4)=|det(A4)|

(2) and (3) follow from the fact that o?,...,c? are the eigenvalues of
AAT (cf. [4]).

Definition: A real n by nmatrix A is said to be ly-balanced if the
ly-norms of its rows and columns are equal to 1.A is row-balanced (column-
balanced) if its rows (columns) have equal ly-norms.

Lemma l.:Let A be a non-singular matrix and D=diag(d,,...,d,),
d;#0. Then

(i) if A is row-balanced, then w(DA)=w(D)w(A).

(ii) if A is column-balanced, then W AD)=w(A)w(D).

Proof: We prove only (i); the proof of (ii) is analogous. Let r=|| 4;, [la=

1|12

(}:a?j for i=1,...,n Then by (2):

myc)=(5 | A |DV2=r

My(Opa) = (1| d;. A |DV?=(5 &2 P32 =1 . my(o )

and thus my(p,) = mMy(0p)- My ,)- By (3):

mo(cps)=|det (DA)[V/"=|det (D)|"".|det (A) ["=my(D).m(A) q. e. d.

Theorem 1.: Let A be a non-singular matrix, r;=|| Ay |ls» ¢;=|| Awlls and
A=A .diag (c;" ..., ;) Ar=diag(r;', ..., r71).A

i. e. A° and A" are the column- and row-balanced matrices obtained from A
by right and left scaling respectively. Then:

(i) WA)=w(A)w(cy, -« ., )
(ii) @(A")=w(A)w(ry ..., 7).
Proof: Apply Lemma 1 to
A= A°diag(cy, .. ., c,) and A=diag(ry, ... 7,)A" O

Let us consider the sequence obtained from a non-singular matrix A by
consecutive left and right scalings:
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D, n A, for evenn
) Ao=A Anp= A,. D., for oddn

where D, ,(or D,,) is a diagonal matrix chosen to make the /;-norms of the
rows (or columns) of A4,,, equal to one.

Theorem 1 implies that w(A,)=w(A,)=---=1 and thus w(A4,) converges
to a minimal value w@min (A).

Moreover, the matrix sequence A, A,,..., converges to an /y,-balanced
matrix A*. In fact, this claim is equivalent to the assertion that the matrix
sequence A, A, ... where (A)),;=(A4,)?} converges to a doubly stochastic

matrix, what follows from the well-known result of Sinkhorn and Knopp
[3]. (Since A, is non-singular, A’ always possesses a positive diagonal, what
is the necessary and sufficient condition for the convergence.). From the
theorem of Sinkhorn and Knopp it follows, further, that the necessary and
sufficient condition for the existence of two diagonai matrices D, and D,
such that A*=D,AD, is that A be fully indecomposable.

Now we are going to show that the scaling strategy (4) is the best what
can be done to improve w(A4).

Theorem 2: Let A be a non-singular ly-balanced matrix, and B=DAE,
where D=diag(d,,...,d,) and E=diag(ey,...,e,) are two non-singular dia-
gonal matrices. Then

w(A)=w(B),

whereby the equality is reached if and only if w(D)=w(E)=1, i e. iff
|dy|="---=|d,| a"dlel'j:""l_enl- Y -
Proof: Let £'=(e;,...,e,), where e, is equal to the /,-norm of the i-th

column of DA, and let E”" =FE'FE.
Evidently B-=DA(E’y"'E" and, by Lemma 1 and Theorem 1:
w(B) = w(DAE") ™). w(E" )= w(DA)w (E"). w(E")=w(D) . w(A).w(E"). w(E"")

Since w(E"')=1 it suffices to show that
w(D).w(A). w YE)=w(A), i. e. that w(D)=w(E").
w(D)=w(d,| . ..,|d,|)=myd)myd), where d=(|d,|,...,|d,|)
wE)=w(e, ..., e,)=mg(e’)m,(e), where &’ =(e|,....e))
\ 12 1 1,2
Since A is row-balanced : mq(e’)=(; ‘2’ dj.a)) =(, }’Jd'{) = my(d) and we

must only show that mg(e’)=my(d)-
The proof is based on the following generalization of the Bernoulli ine-
quality :

n n
(5) nx)i=s lzl wx, for x,p=0Ep,=1,

ol

where the equality is reached iff x,=...=x, (The case n=2 is the well-known
Bernoulli inequality, and the general case is easily proved by induction on n.)
Denoting 8,=d}, a,=a}, we have:
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) 12 Un 1/2n
mo(e)=(M(Ed?.a2) ) =(MEday) -

Since A is [y-balanced we can apply (5) to each sum in this product thus
obtaining : mg(e’)= (I, I1, 87:j)' 2" = (I1, §, ¥j%;)' 2" = (T1,8,)'**=m, (d) q. e. d.

This theorem shows that a balanced matrix A can not be “re-balanced
to improve @(A), and that the optimally scaled matrix A* obtained by (4) is
unique up to scalings by matrices of the form D=diag (+1,..., +1).

Let us note in conclusion, that an /,-balanced matrix A is not necessarily
optimally scaled with respect to the classical condition number &(A) (cf. [1]).
However, trying to improve the condition number of such a matrix by scaling,
one should remember that this will increase @w(A) and the probability of having
large growth of errors in the solution. It should be mentioned also, that the
necessary and sufficient conditions given in [1] are quite hard to be practically
tested, and that no algorithm is known for optimally scaling a matrix with
respect to &(A).
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