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VARIETIES OF PAIRS OF ALGEBRAS WITH A DISTRIBUTIVE LATTICE
OF SUBVARIETIES

VESSELIN S. DRENSKI, LYUBOV A. VLADIMIROVA

This paper deals with varieties of pairs of algebras over a field of characteristic O. One of the
algebras is Lie and the other is its associative enveloping algebra. Necessary and sufficient conditions
for the distributivity of the lattice of subvarieties are found.

Introduction. All algebras will be over a fixed field K of characteristic O. Let
A=A(X)=K(X)=K(x,, Xq-..) be the free associative algebra with free generators
Xy Xg ..., Ay — the subalgebra of rank m generated by x,,..., X,. Let L=L(X) be
the Lie subalgebra of A generated by x,, x,, ... with respect to the new multiplica-
tion (1, v]=u(ad v)=uv—ou. It is known that L is a free Lie algebra. We denote by
Sym(n) and GL, the symmetric group and the general linear group, acting on the set
of symbols {1, 2,..., n} and on an m-dimensional vector space, respectively.

Let G be a Lie algebra and let R be its associative enveloping algebra. The po-
lynomial f{x,,...x,)from K(X) is aweak identity for the pair (R, G) if f(g;, .. »&x)=0foran
8- -» Zn€G. The set T of all weak identities for (R, G) is a weak T-ideal in K{(
definied by (R, G). If / is a weak T-ideal, then f(u, ..., u,) belongs to [/ for any
fxy ..., x)€1 and u,, ..., u, € L(X). The class of all pairs (R, G) satisfying a given
set of weak identities forms a variety of pairs of algebras.

Many properties of varieties of algebras can be transferred verbatim to varieties
of pairs. For example all subvarietes of a given variety of pairs form a lattice with
respect to intersection and union. The weak identities are introduced by Razmy-
slov [5] in his studying of the 22 matrix algebra. They can be applied to other
Lie and associative algebras as well [3].

Let / be a weak T-ideal in A(X) and let O be the variety of pairs corresponding
to /. Then (A//, L/(L 1)) is called a relatively free pair of M. We denote A// by
F(M) and A, /(A,,N1) by F,(M). Since the characteristic of K is O, any weak T-ideal
in A(X) can be generated by its multilinear polynomials. We denote by P,(I) the set
of all multilinear polynomials from F () of degree n. The space P,(M) has a struc-
ture of a left Sym (n)-module. The action of the symmetric group is inherited from
that on P, A, and is defined by the equality o(x; ... x; )=Xo(i) . . - Xo(i)» O € Sym (n),
Xiy. .. x( € P(M). The algebra A, is isomorphic to the tensor algebra of a vector spa.
ce of dimension m. Thus F,(M) is a left GL,-module with the action g(x;,. X))
=8%) ... (x1), g€GLy Xiv... X € Fu(M).

The irreducible Sym(n)- and GL,-modules are described by Young diagrams. For
any partition A=(A,, ..., A,) of n we shall denote M(}) and N,(L) the Sym (n)- and

L~-modules corresponding to A. It is known [4], that the homogeneous component
F(.")(‘m) of F,(M) and P, (M) have the same module structures. It means that if P (M)

= ZR(A)M(L), then FU(IN) = ZR(AN,,(1). The necessary information about the represen-
SERDICA Bulgaricae mathematicae publications. Vol. 12, 1986, p. 166—170.



VARIETIES OF PAIRS OF ALGEBRAS . . . 167

tations of the symmetric and general linear groups and their application to polynomial
identities are given in (2, 1, 4].
The main result. We shall prove the following main theorem in this paper.
Theorem. Let M be a variety of pairs over a field of characteristic O. The
lattice of subvarieties of W is distributive if and only if the pairs from N satisfy
the weak identity

(*) alx, yly+Byx, ¥y]=0

for suitable a, B from K, such that (a, B)==(0, 0).

Remark. This result is an analog of Anan’in and Kemer’s result [1] for vari-
eties of associative algebras. But if one compares the description of P,(3%) in both ca-
ses, one can see that the lattice of subvarieties in the case of pairs is more compli-
cated than in the associative case.

It is known that condition for distribution of the lattice of subvarieties is equiva-
lent to the condition for distributivity of the lattice of Sym (#)-submodules in P, (M).
Therefore our task is to find necessary and sufficient conditions for P,(M) to be a
sum of non-isomorphic irreducible Sym (z)-submodules for every n=1. The Sym (n)-mo-
dule P, of the multilinear polynomials in the free associative algebra is isomorphic to
the group algebra K Sym(n) and P,=Z (dimM(L)) M(X). The least » with dim M(X)>1 for a
given A is n=3, when dim M(2, 1)=2. Hence a necessary condition for the distribu-
tivity of the lattice is the existence of an identity, which “glues” both isomorphic
modules M(2, 1). Such an identity is (*). In order to.prove the theorem, it suffices to
establish that the identity (+) implies the condition P,(WM)=EIM(L) for any n=3.

Denote by O the variety of pairs determined by the weak identity (x). We shall
examine four different cases, as is done in [1]:

(i) a=0, B0, a—B=0, a+p=+0;

(i) =0, =0 (the case a0, B=0 is similar);

(iii) a—B=0, a=+0;

(iv) a+p=0, a¥0.

Proposition 1. Lef a%0, P50, a—PB30, a+B+0 in the identity (+). Then
P (M)=M(n)+M(n—1, 1)+M(n—2, 1?). (Actually one can prove that the module
M(n—2, 1?) does not enter into P,(M).)

Proof. We shall divide the proof in several steps.

1) We linearize () and write it in the form

a([x, ¥, 2]+[x 2 yD =[x, yz+2y), a=(PB—a)(a+p)~"

Then we substitute for x the Lie element [x, ¢] and using the obvious identity [x?, y,
£ < e vl L 2] 9]+ [x, ¥] [t 2]+ 1% v, 2)t we get [[x v [z 8)+((x 2],
2, y]]=0.

For z=¢ we obtain that [[x, ¥]. [z, x]]=0 and, hence

(—1)°[Xe)s Xo(2)] [Xo@» X3]]=0, o€ Sym(3).

2) Rewriting the identity (s) in the form [x, y]ly==by[x, y], 6= —P/a and multi-
plying by x from the right-hand side, we obtain [x, v]yx=0by[x, y]x="byx|x, y].

Permuting x and y gives [y, x]xy=>bxy[y, x]. Adding the last two identities
(62—1)[x, y]»=0, and keeping in mind that a+B<-0 we establish [, ,‘;]p:o.\

3) We substitute [2, ¢] for z in the linearization of (#): [y, x][2, #]+y[z, flx—|z,
t)xy = b(xylz, {]—x[z, t]ly+[z, ][y, x]). Now the summation over all permutations of
Y, x, z, ¢t with an alternating change of signs gives 2(1—5)S,=0. Therefore the stan-
dard polynomial S(x, ¥, 2, ) belongs to the weak 7-ideal of the variety .
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4) The linear space T, of proper (or commutator) multilinear polynomials in Pa
is a Sym(n)-submodule of P,. It is well known that T,=M(3, 1)+ M(2%)+M(2, 1?)
+ M(1*). The submodule generated by |[x,, x| [x5, x,] is a sum of M(22), M(2, 12)and
M(1*). On the other side, M(2?), M(2, 12?) and M(1*) are generated by the linearizations
of the elements [x, y]2, 2(—1)°([Xo1), Xo2))s [Xo@)» Xi]], Si(x, ¥, 2, f), respectively. We
have seen that these elements are from the weak 7-ideal of the variety. Hence we ob-
tain the new identity [x, y]|z, £ =0.

5) We substitute z with [z, £] in (*) and use the obvious identity [x¢, v, z]=x[¢,
v, 2]+[x, v, 2)t+[x, 2][t, y]+[x. Y] [t 2). Some calculations give [x, y[z, ]+ [z, t]y]
=a((lxy), [z, tl+[x, [z 8, y)=a(lx, y, 2]t+ [x, 2, ylO)+a(zx, ¥, t+2[x, ¢, y)+a(z,
vl [x f+1x 2] [t Y=t ylIx 2] =[x 8 [z, yD—a(t[x, y. 2]+Hx, 2, y)—a([ x, y. t]z
+[x 8 yl2)=[x, yz+zylt+z[x, yE+ty| —t[xyz+zy|—[x, yt+tylz. Hence [x, yz4-zyjt
+2[x, yt+ty)= [¥, W(2t)+(2t)y] —2z[x, YIt =[x, W2b) +(2)y]|—22]x, yli— [x, W(E2)+(t2)y]
+2t[x, v]z=|x, y|z, t]+[z, #y]—2(z[x, y)t—t|x, y]z) and we establish the identity
z[x, yjt=t[x, y]z.

6) Using similar transformations we obtain x[y, ¢]z2—0xz[y, ] [rom the lineariza-
tion of the identity z[y, x]x=bzx[y, x|. Analogously, the identity [y, f]zx=0bz[y, t]x
follows from the linearization of [y, x|xz=bx[y, x|z

7) We rewrite this identity in the form f/[x, y, z]=(b—1)tz[x, y].

8) The free associative algebra A, is a universal enveloping algebra of the
free Lie algebra L,. Let u#,<u,<--- be an ordered basis of L, consisting of
commutators #,= [Xi,...., X;], such thatdegu,<degu,=--- . By the Poincaré-Birkhoff-
Witt theorem, the products u;, ... #; , iy< --- <i, form a basis of A,. By the universal
property of the free associative algebra, there is a homomorphism A4, — F,(M) which
extends the map x; — x;, i=1,..., m. Therefore F, (M) is spanned by the polyno-
mials xi, ---x; [%a o] oo X ) b= e s, 50,2, 3,

9) We substitute [x, ] for x in the identity [x, y] [z, £]=0. It follows that [x, u|
y[z, ]=0. Applying induction we obtain the identity [x,, xg]x3, ..., Xp—g[Xs—1, X,]=0.
Hence we can exchange the variables placed on the left of the commutator. We con-
clude from this fact and the identities [x, y] [z, ¢ =0, [y, t]zx = bz[y. t]x=b2xz[y, {],
that F,(M) is spanned by the elements xi ... x;, xi ... x; %, X)) fy50 e S

10) The commutators [x,, x,] generate in A, an irreducible GL,-submodule iso-
morphic to N,(1?). Now we use an idea from [6]. We consider the map ¢ from K[x,,

.y X AN, (1?) into F,(M) defined by x; ... x,-n_’®[x,n__l, Xil X X, o, .
x; ). In virtue of the identity [x,, Xa|X;... Xps[xs_;, x;J =0, this map is a homomor-
phism of GL,-modules. Moreover, F, (W) =/m¢+K[x,, ..., x,] and K[x;,..., xml
=X N,{(n). Using the Littlewood-Richardson rule for the tensor product of GL,-
modules we obtain that K[x,, ..., X, |JNa(1?)=EN,(n—1, 1)+ XN, (n—2, 1%). Therefore
the irreducible submodules of A, (W) are among M(n), M(n—1, 1) and M(n—2, 12).

Proposition 2. Let B O in the identity (+). Then

P M) M(n)+ M(n—1, 1)+ M(n—2, 12).

Proof. First, one can see that the proof of the identity [x, y| [z, £]=0 holds
for p=0 as well. Now the identity (+) is of the form [x, y]y=0. We substitute y
with [z, f]+y and obtain x[z, f]y —[z, tJxy—0. Then we deduce, as in Step 6 of Pro-
position I, that x[y, zJ¢--0. Obviously, it follows that [x, yJz2¢-0. As in Steps 8 and
9 of Proposition 1 we obtain that F, () is spanned modulo the last two identities
by x4 ..., X, ... x,‘[x,,. x5, iy -+ =iy Now, the proposition follows as in case (f).

We shall consider the third case. Let E=K[§(¥)] be the polynomial algebra in a
countable set of indeterminates &M, | <i, j=n k=1, 2,.... The matrices §™ = (§()
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EMY(E), k=1, 2,..., generate the algebra K(§) of n<n generic matrices [7]. This
algebra is isomorphic to the relatively free algebra of the variety generated by M, (K).
Similarly, for @ =K[0¥ [1 =i, j=n, k=1, 2,..., I} 0% - 0] we introduce trace-
less generic matrices 0% (8(%). Repeating the arguments for K(E)=F (var M(K))
we establish that the subalgebra of AM,(Z) generated by 0, k=1, 2,..., is fiso-
morphic to the relatively free algebra F(var (M,(K), sl (K)))-
Proposition 3. Let a—B=0 in the identity (x). Then

P ()= ZM(),
where the summation ranges over all L=(L,, kg, k3), hy+ry+Azg=n.

Proof. It is known from the paper of Razmyslov [5], that the weak identity
[xy+yx, 2]=0 generates the weak T-ideal of the pair (My(K) siy(K)). Clearly, this
identity and [x, v]y+y[x, v] =[x, ¥?]=0 arc equivalent.

Let g(x,...., x,) be from P, and generate an irreducible Sym (n)-module corre-
sponding to the partition A=A, ..., ). As it is known [4], the polynomial g(xy, ..., x,)
is equivalent to a polynomial f(xx;, ..., X,)=Za:fd{x;, ..., X,), @€ K, = ¢ Sym(n), which
generates in a standard way an irreducible GL,-module for m=r. The variables of
fdxy.... x,) are distributed in groups of m,, ..., m, where m; is the length of the
j-th column of the Young diagram [A] related to the partition i. Any group consists of
Xy. .., Xm, and fo(x,, ..., x,) is @ skew-symmetric sum over any such group.

Since [xy+yx, z] generates the weak 7-ideal of the pair (MAK), slg(K)), a multi-
linear polynomial g(x,,..., X,) belongs to 7(M) if and only if g(x,,..., x,) vanishes
upon substitutions with arbitrary elements from s/y(K) for the indeterminates x. Thus,
it is enough to substitute the eleinents ey, &5, €,,—€,. which form a basis of sly(K).

We use arguments from [4]. Assume that 7 4. Since dim sly(K)=3, and f{xy,...,x;)
is skew-symmetric in the group of variables x,,..., x, we obtain that fd(x, ..., 3y
=0 in F(OM). This means that the Young diagrams [i] of the irreducible submodules ML)
of P(M) contain no more than three rows.

Without loss of generality, we shall consider identities in three variables. A po-
lynomial f(x,, x, Xxg)€ Az belongs to the weak 7-ideal of the pair (My(K), sly(K)) if
and only if f(& n, L)~ 0, where

(5 ) G ) el )

are 22 generic matrices with zero traces. Applying a suitable diagonalization, as in
[4), we can assume that

E=a(e, —ey), M= Dby(€1— ) +0(egt€3)), §=cy(€1,—€g9) +Ca(19+ €91) + (€12—Eq1)
where a, b, b, ¢, ¢y, ¢ are algebraically independent indeterminates. Let A=Ay, Ao A3)
and let f(x,, X, X3)— Za.fdx;, Xy X;) generate NyA). The variables in the monomials
of f(x,» Xa X,) are grouped in A, triples, Ay—X; pairs and A,—X, single variables x,,
such that x,, x,, x are skew-symmetric in the triples, x;, x, are skew-symmetric in
the pairs. Therefore
S(E N, Q) = f(ale,)— eqa), b€y +€ay), C(€19—€5))) = aMb cMe ey = C9)*(€19+ €3))%(€ 19— 9))™,
where & ¢ K, 8,0, 1, 8,4, (mod 2), [4]. "‘hus we obtain that e f, —ef;, =0 1is a
weak identity for any t,, T, €Sym(n). This means that every two isomorphic irreduci-
ble modules glue together, i. e. the multiplicity of the irreducible modules in P ()

is not more than 1.
It is not hard to see that the multiplicities equal 1. The polynomial $5(x;, X3 X;)

Xy Xg|%x:, 3p + 2 +r n, generates an irreducible GLg-module corresponding (o the par-
tition (p+¢+r, p+g¢, p). If we substitute for x,, x, xy the matrices
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1 — 1 — 1
d:—Q‘(—"—’11+en)V—1- b=’2“ (612 + ) V—1, c=—{e17—ey)

we obtain Sy(a, b, c)-=a?+ 6%+ c?=—3e/4+4-0. Hence this polynomial is non-zero in
F(ED}) and P.(’Dt)-_: ZM(XI, Xg. )\.3).

Now, let a+B=0. In this case (+) has the form [x, y, y]=0. This identity is equi-
valent to [x, y, 2],=0.

Proposition 4. Let Mt be the wariety of pairs defined by the weak identity
[I))c, vy, z]= O]. Then any irreducible Sym(n)-module M(X) has multiplicity 1 in

n(‘)n)! n=>1.

Proof. The proof of this proposition is obtained by Volichenko[3]. We shall
give an independent proof. The free associative algebra A,, is multigraded in a natur-
al way, according to the degree in each variable x,,..., X, Then 4, N 7T(M) is a
graded subspace and this allows us to define the Hilbert series of F,()=A4,/(A,

N TED)) HFu(D) by - s L) =Z (dim F(W)P)ehs . .. £:m The algebra F,(M) is iso-

morphic to the universal enveloping algebra of F,(9t,), which is the relatively free al-
gebra of rank m of the variety of Lie algebras determined by the identity [x, y, 2]

-0. By the Poincaré-Birkhoff-Witt theorem, F, (M) has a basis xfxg: ... ximIT [x,,
X)), a, b,;=0, 1=i<jsm. We compute the Hilbert series F(F, (), by oo by,
=7 (O f(B(tt)P)=Ty (1 —£) 7 T (1—4¢)72. The last product equals Xsy(f1

(==l
.., t,), where Si(¢,, ..., t,) are the Schur functions [8]. Using that the following ex-
pression is unique A(F, (M), Ly -y ty) = ZXSa (8, ..., £,), where the summation
runs over all partitions A=(Ly, ..., A,), and the coefficients ¥, are equal exactly to
the multiplicities of the irreducible Sym (n)-submodules of P,(), we obtain the proof
of the proposition.

Propositions 1—4 give the prosf of the main theorem.
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