Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



HOW SMOOTH IS THE SHADOW OF A SMOOTH CONVEX BODY ?
CHRISTER O. KISELMAN

Kiom glata estas la ombro de konveksa korpo glata? Estu A barita korpo glata kaj konveksa en RS, kaj
= lineara surjeto de R3 sur R%. La artikolo pritraktas la glatecon de la bildo (ombro) n(A). Se la rando
de A estas dufoje derivebla kun Lipschitz-kontinuaj duaj derivajoj, tiam tiu de mn(4) estas dufoje deri-
vebla — sed ne nepre dufoje kontinue derivebla, e se A estas nefinie glata. Tamen, se la rando de A
estas analitika, tiam n(A) havas dufoje Kontinue deriveblan randon.

1. Introduction. What degree of smoothness does a two-dimensional projection of
a three-dimensional smooth convex compact set possess? It turns out that even if the
set has a C= boundary, its image need not be of class C* However, the curvature of
the boundary always exists. In other words, the boundary of the shadow is described
by a twice differentiable function whose second derivative may be discontinuous.

More precisely, we prove that if A is a bounded convex subset of R® whose boundary
is of class C? with Lipschitz continuous second derivatives, then its image under the map
(x, ¥, 2)—(x,y) has a twice differentiable boundary.If the boundary of 4 is real analytic,
then the boundary of the shadow is of Holder class C*** for some €>0, i. e, the
second derivative of the function describing the boundary is Holder continuous. These
results are proved in Section 2, and in Section 3 we show that they cannot be much
improved. In the real-analytic case the boundnrgxof the projection may be exactly of
class C**% for any odd integer ¢=3; see Example 3.2. That the boundary of the
shadow in the 9" case need not be of class C? is finally shown in Example 3.3 and
Theorem 3.4.

The origin of the present paper lies in the following question, posed to me by
Christer Borell: If A and B are smooth convex sets, does their vector sum A+ B have
a smooth boundary ?

Now, if A and B are smooth subsets of RY, then A+ B may be locally described
as the projection of a smooth set in R? so we are led to studying the shadow in R?
of a body in R%, One of the results is that if A and B are convex and have real-ana-
lytic boundaries, then the boundary of A+ B is of Holder class C*® but no better in
general. This was the initial result in this investigation, but it seems that the methods
needed to study the regularity of A+ B are by necessity different from those used to
study the more general shadow problem, and no clarity will be gained in combining
the two. For this reason we do not pay special attention to the degree of smoothness
of A+ B here : although the positive results apply, they are far from being best possib-
le in this case.

For projections R™XR"—R™ many El:blem seem to remain open.

The author is grateful to Christer Borell, Karl Forsberg and Steven G. Krantz for
valuable remarks concerning the problems discussed in this paper.

2. Smoothness results for the projection of a smooth convex body in R*
Theorem 2.1, Let A be a convex compact subset of R* and = a linear surjec-
tion of R* onto R [f A has a C* boundary, then so has ®(A). If A has a boundary
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190 CH. O. KISELMAN

of class C* with Lipschitz continuous second derivatives, then the boundary of n(A)
is twice differentiable. If A has a real-analytic boundary, then the boundary of n (A)
is of class C*** for some £>0.

To prove these results, we shall reformulate them in terms of functions.Let f be
a real-valued function of two real variables and A(x)=inf, f(x,y) its infimum for a
fixed x. We take f convex and such that f(x,y)—+co as |y|—+oco. Then the epig-
raph of f, defined by f(x, y)<z, projects under =n: (x, y, 2)—(x, 2) to the epigraph of
h, defined by h(x)=z. The points (x, y) where the infimum is attained form a set T
which we call the terminator; when f is of class C! we thus have 7={(x, y); f,(x, ¥)=0}.
When f is of class C? we can also define the strict terminator S:

S={(x' y)E T; fxx(x’ y)—_—tl(nrf fx: (x' t)}-

where 7, denotes the set of all y such that (x, y)¢T; we define S, similarly. The sets
S, and 7, are non-empty compact intervals.

Theorem 22. Let f be a convex function of two real wvariables such that
f(x, y)—+co as |y|—+co, and define h (x)=inf, f(x,y), x€R. If f is of class C',
then so is h, and for any (x,y)¢T we have h'(x)=[/x, y). If the second derivatives
of f exist and are Lipschitz continuous, then h is twice differentiable; for a point
(x. V)T such that f,(x, y)>0 we have (even if f is only of class C?),

Say (%, P
2.1 ()= .
@1 W)= Fa o =Ty
or an x such that f,,(x,y)=0 for some (equivalently all) y¢T, we have
T2 K7 ()= 08 fur ()= Fux (5 9, S5

Finally if f is real analytic near T, then k is locally of class C**s for some €>0.
The "hypothesis that f(x,y)—+ oo with |y| is essential, as witnessed by the real-
analytic convex function f(x, y)=(x?+e?”)'* whose infimum, &(x)=|x|, is not even

differentiable. \
In the proof of Theorem 2.2 we shall need to know that the accumulation points

of the terminator belong to the strict terminator.

Lemma 2.3. Let f¢C?*(R?) be convex and satisfy f(x,y)—+oo as |y|—+co.

Let (x;,y,)€¢ T be points converging to (a,b) and such that x;+a for all j. Then
S.

(a,0) ¢
Proof. Since T is closed we have (a, b)¢ 7. If f,,(a, 6)>0, then T, is just the
point {b}, so S, must also be this point. To prove that b ¢S, in general, we consider
the Taylor expansion in the x direction at a point (a,c)€7:

f(x' C) =f(a' t') +fx (a' C)(X—a)'f'fx, (a' C) (x_a)’/2+ o ((x_a)’)’ x—a,

and we shall use it for several choices of c¢€¢ 7T, (The full Taylor expansion is less
useful due to the presence of a remainder term o((x—a)*+(y—c)?).) First of all we
note that f(a, c)=h(a) and f(a,c)=h'(a) are constant when c¢T, so we may assume
that they are zero simply by subtracting the affine function % (a)+4'(a)(x—a) from
f, thus

(2'3) f(xv C)=fx.t (a' c)(x—a)’/2+o((x—a)’). X—d,

provided c¢T, Now assume that b¢S, and let s be any point in S,. Thus f.,(a,s)
< foe(a, ) for all c€¢ T,\S,. On comparing

f(%, b)=f1s(a b)(x—a)"/2+0(x—a)"), and
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h(x)=f(x, $)=f:(a, 5)(x—a)*/2+0((x—a)®),

we see that we must have f(x, b)>f(x,s)=k(x) for all x close to a but different
from a, in particular

f(xp 0)>f (x5 S)=h (x)=f (x5 ¥)

for j large. Since y— f(x; y) is convex, this is only possible if y; is between & and
s for large j, and since T, is an interval containing both & and s, we must also have
y;€T, for these j. We may therefore take c=y; in (2.3):

f(x' y/)=fxx (a’ y/) (x—a)’/2+o((x—a)’).

to be compared with
f(xp y)=h(x)=f(xp, $)=Frx (@ 8) (x—aP[2+0 ((x;—a)).

Since f..(a, ¥;) — fex (@, b)>f.:(a, s) we do get a contradiction which proves the lemma.
The proof of Theorem 2.2 will depend on an estimate of the mixed second deri-
vative f,,.
Lemma 24. Let f be a convex function of two real variables, defined and of
class C? in the rectangle spanned by four points (a, b), (A, b). (A, B) and (a, B). As-
sume that f,(a, b)=f, (A, B). Then

17 (A, 1dtP =] For (A, 08y (A BY—1 (A, 6= —f Fox (A, D [ £, 5, 0) s,

so that |[%|fuy (A, )| dt|>=<| A—a|'?| B—b'? (supy fex)'" (SuPs| f2y )", where V denotes
the side of the rectangle containing (A,b) and (A, B), H that containing (a, b)
and (A, b).

Proof. The convexity implies that f},Sfxxf” everywhere, so Holder’s inequ-
ality gives

(J 1o (A1) 2005 [ 1 (A 0t [ fy (A, 0= Lo, D ELIAA BI—15 (4, )

= [ Fue A, D11y 0,01y (4, O = Fux (A 0 [y 012,

where we have used the special assumption f, (4, B)=fy(a,b).

Proof of Theorem 22 If 2 is not of class C". it admits a minorant of the
form h(a)+c(x—a)+e| x—a| for some a ¢R, ¢ ¢R and €>0. Then f has the same
minorant, which implies that it cannot be differentiable at @ point (g, b) such that
f(a, b)=h(a). Second, if f¢C? and f,,(a, b)>0 at a point (a, 0)¢T, the result is also
elementary, for then the solution to fy(x,y)=0 is unique when x is close to a, and
the implicit theorem tells us that y=¢(x) for a C* function . We have k(x)=f(x, ¢))
and 4'(x) =f, (x, ¢(x)) from which (2.1) follows by differentiation:

(%)= frex (%, @ (X)) +fry (% @ (X)) 9(%),

‘P'( b)c):ing determined from the defining equation f,(x, @(x))=0: f,, (x, @ (x))+fy, (x,
?(x)) 9'(x)=0.

Consider now a point (a, b)¢ T such that fy,(a, b)=0. We have &'(x)=/f,(x,y)
for all (x, )€ 7, so that, for all (x,y) (@, 0)¢T with x=a,

h’(x)—h'ﬂ= fj(‘rl ,V) ’f;(aa .) p— /](‘r- y) ",l(x' b) + Il(x- b) _/x(av b) 2

x—a x—a x—a xX—a
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As x—a, the second term here tends to f.,(a,b) by definition. We shall prove that
the first tends to zero under the additional assumption that (a,b)¢S. By hypothesis
fy(a, 6)=0=f,(x,y), so Lemma 2.4 yields the estimate

fe(x ) —fa(x b 17 -

Lol NSl B) (o Ly (x, )t |S| x—a 2] y—b 2 (sup £ (5P | ey D',

x—a |x—a|

where H is the segment [a, x]x{b} or [x, a]X{b}. By our assumption in this degene-
rate case fy,(a, b) vanishes, and this implies that also f,,(a 0)=0, for f2 <f..foy
everywhere. Moreover, f,, is Lipschitz continuous, so that |f,y (s, b)|sM|s—a| for s
near @ and a suitable constant M, and supy| f, |[?<M'?|x—a|'?. We take M so large
that it majorizes also f,, in a neighborhood of (a, ) and conclude that

l fx(x- yl:{lx(x- b) lley__bllﬂ'
This shows that if x; tends to a, x,4a, and if we can choose y;¢ T,, so that y,con-

verges to some point b, then
.4 (XI)—’R’(G)

(2'4) x;—a _'fxx (a' b)‘
We now claim that
(2.5) L(‘i%'—(ﬂ —f.(a,b) as x—a, x¥+a,

for any ¢S, In fact, if this were not true, there would exist a sequence (x;) tending
to a, x;=a, such that

I (xp) =R (a)
Xl—d

(26) | —fx(a, 0) |2€>0.
Pick a point y, in T,I; by passing to a subsequence we may assume that ( yj) con-
verges to some point, say c. But by what we just proved, see (2.4), we then know that

” (x)—K (a)
2.7 % =a — fex (@, €)

Since b is in S, (by assumption) and ¢ is in S, (by Lemma 2.3), we must have
fex (@ 0)=fx(a, c), for fee(a, y) is constant in S, Now we see that (2.6) and (2.7) are
incompatible, which means that (25) must hold: 4" (a) exists and is equal to 7., (a,b),
b¢S, i. e, we have proved (2.2).

Now assume, finally, that f is real analytic near 7. For a fixed x, the function
y— fy(x, y) is a strictly increasing real-analytic function in a neighborhood of its zero
set, so is has only one zero, possible multiple. Denote this by @(x). We shall study
the behaviour of @ and 4 near a point which we take to be x=0; we may choose
coordinates so that @ (0)=0. Let f have the power series expansion f(x, y)=ZXay, x/ y*
at the origin; we thus have @, =0. It is known that the solution to the equation
fy(x, y)=0 admits a fractional power series expansion, a Puiseux series, to the right
and to the left of the origin:

9(x)= E'b.x.l" OSXSS.
M-

for some integer ¢ and some 8>0; a similar series exists for —85x=0.1f £, is a
polynomial, this result is due to Puiseux (1850]; in the general case we can first use
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the Weierstrass preparation theorem to find a factorization f,=gw where g is analyt-
ic with g(0, 0)==0 and w(x, y) is a polynomial in y with coefficients which are analytic
in x (for a proof see e. g. Hormander [1973, Cor. 6. 1. 2] or [1983, Th. 7. 5. 1]).
That the zeros of w(x, y)=0 are analytic functions of x'¢ for some ¢ is proved e, g.
in van der Waerden [1939, § 14].

By substituting the series for ¢ into the series for f we obtain A(x)=f(x, ¢(x))
=T ko0 X (Zmar by XM =X 0 c; x79, 0=x<38. Here all series converge uniformly
for these x; as a matter of fact we are calculating with analytic functions of a vari-
able £= x"9 (but possibly different functions to the left and right). We can now read
off the differentiablity properties of % from this series: which is the smallest noninte-
ger exponent ? We know from the result already proved that #’(0) and %4’’(0) exist;
hence there can be no exponent smaller than 2, except 0 and 1. Moreover, the coeffi-
cients ¢y, ¢, and ¢y, i. €. the coefficients corresponding to the exponents 0, 1 and 2,
must be the same from the left as from the right. Therefore £ must have the form
h(x)=h(0)+h'(0)x+h"(0)x2/2+ X7 251 ¢; X9, 0=x<3, and similarly for —5<x<0.
Hence A’ is Holder continuous with some positive exponent. Theorem 2.2 and, conse-
quently, Theorem 2.1 are now proved. We shall see that they are essentially sharp.

3. A smooth convex compact set whose shadow is not of class C2 In this
section we present examples which show that the projection of a compact convex set
in R® with C= boundary need not have a C? boundary. We shall also see that the
degree of smoothness given by Theorem 2.2 in the real-analytic case cannot be improved.

The study of k(x)=inf, f(x, y) leads us to the implicit equation f,(x,y)=0 for
the terminator, i. e. the points where the infimum is attained. To produce examples it
is useful to have a class of convex functions for which this equation can be solved
with some success. We shall first define a class of function such that the solution
y=0(x) to f,(x,y)=0 has an explicitly defined inverse x=0¢7*(y) (Examples 3.2 and
3.3). Then we find a somewhat larger class for which x=¢~!(y) admits a good appro-
ximation (Theorem 3.5) and in which we obtain a necessary and sufficient condition
for A" to be continuous.

The following lemma defines a class of convex functions whose terminators are
easy to describe. . )

Lemma 3.1. Pat f(x,y)=x*v(y)+u(y) where u is convex and v is concave
and strictly positive on some interval I. Then f is convex on RXI.

Proof.Itis convenient to represent f as f(x, y)=;—7)+u(y)=supg(x§—"£—y)§’+u(y))-

Now —o y)E¥4 is a convex function of y, so f is a supremum of convex func-
tions of (x,y), thus itself convex in RX/. y

Our standard choice for v will be o y)=————" which is concave when
4—y+7)"
[¥]=1/2. Thus if u is convex for these y, the function
@) f (5 y)= Xt A—y+5 ¥+ (9)

is convex as a function of (x,y) in the strip |y|=1/2, and its terminator is explicitly
given by x*=u'(y)(1—y). ‘
Example 3.2. Lef ¢ be an odd natural number. The polynomial
1

1 1
fx.p)=x A=y +3 )+ S Y-y
1 \
i convex in the strip | y|<1/2 and Ah(x)= : in{_./(x. ,v)—‘t\"—;,-,‘_—l lxl’*”'+§f_‘_—4|x{""'

for x sufficiently small. Therefore % is of Holder class C**%¢ but no better if g=3.
I Cepanxa, xn. 2
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Indeed, the convexity follows from Lemma 3.1 and the remarks concerning 3.1).
We calculate f,: f, (x, ¥)=(y7—x?)(1—y). The equation f,=0 is satisfied by y=|x|a.
For x small enough the infimum is attained at this y, so that A(x)=f(x,|x %7). We
obtain an expression for £ which in particular shows that Theorem 2.2 cannot be
improved in the real-analytic case.

Example 33. Let 4 be a convex C? function defined for | y|<1/2and satisfying
#'(0)=0, 2'(y)>0 when 0<y<1/2. Define

1
(G2 [l y)=x*(d—y+5 y)+u(y)
and A(x)=inf,,-12f(x,y). Then we have for x>0 and small enough
e fay L YF o . 4(1-yp
3.2) R(x)=fax (6 )=y =8 =W+ G G e )

where y is uniquely determined by x from the relation x2(1—y)=u'(y).

Indeed, f,(x, y)=x2(—1+y)+ua'(y) and f,, (x, y)=x24u""(y), so that the termi-
nator is defined by x?=u'(y)(1—y); that y is uniquely determined by x>0 follows
from the fact that f,, (x, ¥)=x?>0 then. We see that 2"’ is a continuous function of x
for 0<x<e, in fact C= there if u is C=. Moreover, &"'(x)—8 as x—0, x>0, if and
only if u''(y)u'(y)—+oo as y—0, y>0. Now there always exists a sequence of
points b; — 0 such that u''(b)/u’ (b)—+oo. To see this, let (c;) be any sequence of
positive numbers tending to zero. By the mean-value theorem, there exist points b,
0<b,<cj, such that 0<u'(¢c;)=u'(c;)—u'(0)=u'(b) ¢ Hence w''(by)u'(b)y=u'"(by)/u'(cy)
= 1/¢c; —+co. 1T a;=(u'(by)/(1—by))" are the corresponding points on the x-axis, we
therefore see, in view of (3.2), that A" (a;) —8.

However, we can find a function & such that #’’(y)/u'(y) does not tend to + co.
In fact, #’’ can be any smooth positive function which is not identically zero in any
interval [0, ¢, €>0, so it may well have infinitely many zeros y, —0. An example is

" : 1 1
3.3) u'(y)-—=sin? (—T)exp (—}-), y>0.
With such @ function #, and with the corresponding points x;, we have since u'’(y,)=0:
h"'(x))=8—2y,+yi—4(1—y)" —4+8.

Hence 4’ is not continuous at the origin; this conclusion is independent of Theorem
22, i. e. we need not know that 4"'(0) exists. (However, it is easy to see that (h'(x)

—h(0)))x=2(4—y+ 5 y)=8)

Theorem 3.4. There exists a convex compact set in R® with C= boundary such
that the boundary of its projection in R? is not of class c2

Proof. Let f be defined by (3.1) in a neighbourhood of the origin with u even
and defined by (3.3), and extend f in a suitable way to a convex C= function in all
of R2. Then its epigraph, defined by f(x, y)=z has all the required properties under
the projection (x, y, 2)— (x, z), except of course that it is unbounded. A suitable
compact subset of it will do.

What are the crucial properties of the functions (3.1)? It turns out that the con-
ditions f,,(0, ¥)=0, f,,,(0,0)+0 determine a class which allows us to conclude very
much like in Example 3.3. All functions of the form (3.1) as well as those in Lemma 3.1
satisfy f,,(0,y) -0 for all y; those of the form (3.1) satisfy [y (0, 0)=—2.
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Theorem 3.5. Let f¢C*(R?) be convex and satisfy f,(0,0)=f,,(0,0)=0,
£y (0, y)=£0 for y=+0, f,,(0,y)=0 for all y, and f,.y(0,0)<0. Then the second de-
rivative of h(x)=inf,f(x,y) is continuous to the right at the origin if and only if
fyy (0, 9)/f (0, y) tends to +eo as y—0,y>0.

Proof. Consider the Taylor expansions of f,, f,, and f,, in the x direction
around a point (0, y):

(3.4) 1y (5 9) =1y 0, )+ 5 2 fry (0, 1)+ 2 1(%, ¥),
(3.5) fyy (X, 9)=1yy (0, ¥)+x2 2o (x, V),
(3.6) Fry (% 9)=Xf 1y (0, ¥)+ 2 g3(x, ¥),

where the g, are some continuous functions. Here we have already used that f,,(0,y)
=f.y» (0, y)=0. Since f,., (0, 0)<0, we see from (3.6) that f,,(x, y)*/x? is bounded
from above and below by positive constants in some neighbourhood of the origin.
In particular, there is an >0 such that Fex (5, 9) foy (%, ¥)= [y (x, ¥)°=ax?, which shows
that f,,(x, y)>0 for x>0 and sufficiently small. The solution y=¢(x) to f,(x,y)=0
must tf:ereforc be unique if x>0, and the implicit function theorem shows that ¢ is
of class C?® for 0< x<e. On differentiating A(x)=f(x, 9 (x)) we obtain 2'(x)=f(x, ¢(x))
(which incidentally shows that % is of class C* for 0<x<e), and

37) R(x)=frx (%, () + fro (X, ®(NO(X)=Frx (X @(X))—Fry (X, @()P/fyy (%, 0(X)),

all valid for x>0 and sufficiently small. )

From (3.4) we see that when y=o(x) and x is small enough, then bx*< £,(0,y)
<Bx? for some positive constants b and B. In particular, we see that ¢(x)—0 as
x—0, x>0, and we define ¢(0)=0. By Theorem 2.2, A”(0)=f,,(0,0), for To={0}.

. o xy (X
Therefore % is continuous to the right at the origin if and only if ?ﬁ(—;:(%))’_.o as
x—0, x>0; i. e. if and only if

/_u_u (.l', 0‘.())
f,0.00)
for f,,(x, 0(x))? f,(0,¢(x)) and x* are all comparable. Now, in view of (3.5
/I/ll(x. 9(x)) - jw(o. o(x)) -l"g,('x, ox) | @
f,0 0 (x)) — £,00,0(x)) + YA IC I where the last tenTx is bounded, so (3.8) is in
turn equivalent to f,, (0, y)/f, (0, y) —+ o as claimed. (If f is of class C? only, we need

not have fy, (X, ¥)—f,y (0, y)=0(x* so this last step in the proof will not work; all
others will.

(3.8) —+co as x—0, x>0,

REFERENCES

l.L.H6rmander. An introduction to complex analysis in several variables. Amsterdam, 1973.

2. L. Hormander. The analysis of linear partial differential operators. I. Berlin, 1983.

3. V. Puiseux. Recherches sur les fonctions algebriques. J. Math. Pures Apfl-. 15, 1850, 365-480.

4. B. L.vander Waerden. Einfihrung in die algebraische Geometrie. Berlin, 1939.

Uppsala University, Dc,artnu'nl of Mathematics, Received 21. 12. 1984
Thunbergsvagen 3, 8—/52 38 Uppsala, Sweden



