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ON THE BEHAVIOUR OF TWO MODULI OF FUNCTIONS. IL
KAMEN G. IVANOV

In this article we continue the investigations from [5, 6] on the relations between differeat cha-
racteristics of functions. Two type generalizations of the results in [6] are given. The mathematical
facts involving such Kind of results are emphasized. An answer to the question posed in [5] is given.

1. Notations. R™ in considered as a vector space over the field R. D® denotes as
usual the differential operator (0/0x,)% ... (d/dx,)"» with multiindex B=(By.--, Bn)»
,=>0. | - | stands either for the length of B (|B|=ZX B, or for the Euclidean norm in
R™ or R. |||, is the L, norm of a function if 1<p<c> and | - |~ is the sup norm.
k is natural, 1<p, g<co, 8,0, £>0. x, y, z are points in the domain QcR™ of the
function considered, 4 ¢ R™. V(x)={y ¢ R™: | x—y|<8}. M is the set of all bounded
and measurable functions. We denote with ¢ a positive constant although not always
the same one. The exact dependence of ¢ on the other parameters is explicitly given.

2. Functions of several variables. In this section we deal with real valued func-
tions defined on a domain Q—R™. In Theorem 1, Corollaries 1 and 2 and Lemma 3 Q
is supposed to be: 1) Q=R"; 2) Q=[0, «)"; 3) Q=[0, 2n)" if f is 2r periodical
with respect to each variables. Comments for Lipschitz-graph domains are given in
Section 4.1.

For a function fwe consider the moduli

(1) 0l f3 8)p= sup{[|A4f () ]o:] |8}
and
(22) w(f: 8),= oy f. -5 8)ll,

. k
(where @, ( f, x;8)=sup{ AXf(¥)|: v, y+kh €V isax)} and Ay f(y)=Z;_, -—l)_“"( p )/(y
+sh) it f is defined on the segmet with the end-points at y and y+xk and A} f(y)=0
othewise.
For our purposes we also need the moduli
(2.3) W f3 )gp=l 0 f 5 8)g 'y

where @,(f, x; 8)g= (8" [ n=s AL f(x) |%dR]'".

Moduli (2.1) and (2.3) are defined for each class of equivalent functions in L, and
L,(r=max{p, b)), respectively, and moduli (2.2) are defined for each individual func-
tion in M.

Moduli (2.1) generate Besov spaces (k>0) B = {f€Ly: Ii/il,,:;-llfl!,+[f5'[t“o).(/;
Dt 1dt] < o) (g< o) and B) , ([ € Ly | f|[By, .~ I|flp+sup (£ 0y £ 0),: >0} < co}
and moduli (2.2) generate the spaces (see [8, 12]) A} ~{f¢ M: “/',A:,, =N £, + [ [l
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(f3 Pt < oo} (g< =) and AL =(fEM: [0 = |f|+sup{t=befs 8),: ¢

>0}< co}- _
The properties of ®, are assumed to be known and we give only the needed pro-

perties of moduli (2.2) and (2.3).

(24) w(f+8; 8),su(f: 8),+1u(g; 9),

@5) ks myd S5 DpalVeNS OS5 DV slxNslls myf : BpAVelx))

for each x¢ Q and £¢ (0, 8]. (The indication of the domain V&(x) means that the norm
is taken over this domain and the function may not be defined out of this domain.)
(2.6) c(k, m)t( fi 8)pp=04 f; 8)p=c(k, myty( f3 8)p,p -

(2.4) follows directly from (22). The first inequalities in (2.5) and (2.6) are gotten
from (2.1) and (2.3). The proof of the second inequalities in (2.5) and (2.6) follows the
proof for the one-dimensional case given in [3].

Now we turn our attention to the property

: , s 8% D f S 88 (|D8f,).
(2.7) tW(fi 8),=c(k, m) §m=k I f‘lﬁ‘s""'o"s'{' \Df |1

(2.7) is a consequence of Theorem 1 in [13] and (2.7") below. A weaker form
of (2.7) is Lemma 4 in [12]. Let us compare (2.7) with the corresponding inequality for

2.7 o) f; 8),=c(k, m)mikﬁ"ilD"f o

We see that the additional (in comparison with (2.7)) sum in (2.7) vanishes either if
m=1 (the one-dimensional case!) or if k&=m. But V. Popov [9] shows that (2.7) is.
not true without the second sum in the case k=1, m=2, 1<p<2. So we have a pure
several-dimensional effect which will bother the proof of the main result of this section.

Theorem L If feB}Y then f coincides a. e. with a continuous function F

such that (k>m/p)
8
(28) W(F 3 B),sc(k, m, P37 [oy(f3 Bt~ -mrdt.

Theorem 1 is a several-dimensional generalization of Theorem.1 in [6]. Two facts
are basic in the proof of (2.8): the embedding Bj’<L. (Lemma 1) and the equiva-
lence of w, with a property defined K-functional taking into account the semi-norm in
the right-hand side of (2.7) (Lemma 3). § )

Lemma 1. Let f ¢ B2p([0, 1]™). Then J coincides a. e. with a continuous functon

F such that for k>m/p we have
/ 1
(2.9) |Fllesctk, m, p) (1f llo+ [ @S5 D717 d).
This lemma is a consequence of Theorem 18.10 and Theorem 18.11 in [11, pp.
302, 303). With a linear transformation from Lemma 1 we get

Lemma 2. Let z¢R™ §>0, Q=[2;, ;48] X X[2m 2u+0] and ge¢ By (Q)
Then g coincides a. e. with a continous function G such that for k>m/p we have

(2.10) |G ||l Q) c(k, m, p) (5™ || gii,(n)+:fo),( [ 6),( Q)1 df).
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The constants in (2.9) and (2.10) are one and the same.
Lemma 3. Let f¢ L, Then for each k and >0 there exists gus such that

(2.11) || f—gns ok, m)o( fi 8)p

(2.12) 5# DPgus | ;= c(k, m) oy f; 3), for each [B|=k

and

(213) 581 DPgas ||, < c(k, myoig( f3 8), for each |B|>k, 0<P,=k.
A weaker form of (2.13)

(2.19) 39| DPgs < c(k, myoy(f; 8), for k< Bj=m, B;=0, L.

will be used in the proof of Theorem 1.
Proof. We set Us=[0, 8] and define a modified Steklov function ges as fol-

lows

(2.15) Bual) =57 [ | £ (—1y (5 ) fxrsadn, .. dn,

s=1

where z=(h,+ --- +h,) k. Note that k¢ R™ for i=1, 2,..., k! To prove (2.11) we
use (2.1) and Minkovski’s inequality

}if—gma”,=8_w ILJ‘ ...L': A:f()dhl R dhhllp
3 8
-55’”'[["' [flA:f‘, dhy ... dh, = o, (f' \/—";S)pgc(k' ”l)(I)‘(f; 8),.

In the proof of (2.12) and (2.13) we can consider separately each term in the sum in
(2.15). We set ABf(x)=AP ... Anf(x) where 8,=(5, 0,...0)...,8,=(0,...,0,38). Then
for k<|B|<km, 0=P ==k using Minkowski’s inequality we get

&
(2.16) [DPgr.s ﬂﬁsc(k' ’n)a—‘m.?:zl HAf"mfl‘,.

Now (2.16) proves (2.12) and (2.13) in view of Theorem 1 in [2] which gives a
repesentation of the mixed finite difference Af as a linear combination of forward
finite differences of order |B|.

Proof of Theorem 1. Lemma 1 gives that f coincides a. e. with a continuous
function F. Let >0 and g be gus from Lemma 3. Then (24) gives

(2.17) 1W(F i 8)pstlF—g: 8),+1lg&; 8

From (2.7), (2.12) and (2.14) we get

(2.18) t(g: S sc(k m) (T 8D+ I 8D
|9 ==k pJpism

i

<c(k, molf; 8),sclk, m)&"’”jm,( i ), t=1—m dt.

From Lemma 2 and (2.5) we get
(2.19) o F—g x; 8)=2*sup{| F(y)—gW|: ¥V (X))

ek, . p) (57 | F—g [V a0+ FeulF—8: D (Vasr = )
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Applying (2.2), (2.19), Minkowski’s inequality, the inequality | Ve dusc(m)s™, (2.3),
(2.11) and (2.6), we obtain

(2.20) wWF—g; 8)p,=c(k, m, p)[3—m° (f‘l ‘[s (J F(y)—g&(y)? dy dx)i»
= Z‘t—l-m”’(t{ Vf( )m,(F—g, yi t): dydx)'/*dt]
F3 X

8
sc(k, m, p) [|F—gll,+3" [1(F—g; Byt~ de]

<cll, m, p) [0 f:8),+ 3 T o(F—g; £\ d]

<clk, m, ) (0[5 )+ [@Ufi D, +0ulg: D~ dt)
From (2.7') and (2.12) we get

3
(2.21) jmk(g; t) =1 —mrdt < c(k, m[)m}:_ J| D* g, of fr=1—mipg¢
=c(k, m, p)d—me 191}5——* | D® gll,<c(k, m, pYs—mraf; 3),

Now (2.17), (2.18), (2.20) and (2.21) prove (2.8).

From Theorem 1 we immediately get _

Corollary I B;",FCA;(; with the corresponding inequality for the norms.

Embeddings of the above type should be considered as follows: in each class of
equivalent functions in B:/{ there is a representative in A;j’_’_.

Using Theorem 1, we obtain repeating the arguments from the proof of Corollary
2 in 6).

c]>rollary 2. If 0>m/p, then B:4=A:#

Corollary 2 is stated without proof for Q=R™ in [12] and it is gotten with diffe-
rent methods by V. Hristov in [14] for Q=R™ and in [13] for 6>m and Q=[0, 2x]™.
For the case m=1 see [5, 6, 8].

3. An one-dimensional analog. What we use here from.Sgction 2 is in the case
m=1. In this section we replace the constant & in the definition of @,(f; 3), and
w(f: 8), with a function depending on x. It is easy to do this for t,(f; 8), — we
consider in (2.2) § as a function of the integration variable. In view of (2.6) itis con-
venient to consider (2.3) with ¢=p as an equivalent definition of @, and to work
with a non-constant 8.

In this section the functions are defined on [—1, 1. We assume that A}f(y)=0

if y of y+khe[—1, 1. We set A(d, x)=dJ1—x*+d?* for x¢[—1, 1], d = const>0
Then t,(f; Ad)),=|l 0 f, - ; A, )|, and t(fi A(@))p.p=|0f, - ; Ad, -)),!l,. The main
result of the section is
Theorem 2. Let k>2/p, feL[—1, 1] and [0 (f, A())ppt ' Pdt< co. Then
f=F a. e, F is continuous and for d<(4k+2)~"' we have
4h+2)d

@31) W Fi Ad)ysclh, P ‘J Wl f3 Ayt~ —eat.

Following the arguments of Section 2 to prove Theorem 2 we need the inequali-
ties (see (4.1) and Corollary 4.2 or Corollary 4.4 in [3])
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(32) w(f+g: Ald),=t( f; Ald)),+ g Ad)),,
(3.3) W f+8: Ad)prstl(fi Ad))pe+1(fi A@))p.pr
(3.4) w(fi A@d),=c(x) (A@)fP ||, if [P eLy,

an embedding result (Lemma 2 is enough for our purposes) and a good intermediate

function.
Lemma 4. Let feL,[—1, 1|. Then foreach k and 0<d<=(4k +2)7" there is g..
such that

(3.5) | f—8rallp=clR)yu(f3 A(d))p.p»
(3.6) 1 (A@)g®) |, s clky(f5 Ad)p.p

This lemma follows from Theorem 3.1 in [4] if we put in it w=1 and gra=GCpn
where n is the integer part of l/d.

We set y=vy(d, x)-d(1—d) yl —x?+d* and y=7v(d, x)=In y(d, x)/Ind. Itis easy
to see that w(d, x)=A(d, x)=2y(d, x) and so

@7 W5 Ad),=T4(f 3 20(d)),.
The next three lemmas are technical.
Lemma 5. Let k2, x, ye[—1, 1], |x—y =ky(d, x)2. Then
((4k+3) (42 +2)H)? A((4k+2)d, v)<w(d, x)<A((4k+2) d, y).

Proof. From (2.5) in (3] it follows that (42+2)"'A(d, x)=A(d, y)=(4k+ 3)A(d, x)
for |x—y|<k/2.A(d, x). Hence y(d, x)=A(d, x)<(4k+2)A(d, y)=A((4k+2)d, y) and
v(d, X)>172.A(d, x) (4 +3)"'A(d, ) = (4k+3)"(4k+2)73A((3 +2)d, y).

Lemma 6. Let 0<u=d. Then u—14d<dWwy(d, x))~"

Proof e ! :(—-d— Y—T M~ ™ because v(d, x)<?

Cowd, ox) g7 u du’ T d*w’ ’ ’

Lemma 7. Let 0<u--d. Then ' <wy(u, x).

Proof. We have Inu<0 and hence Lemma 7 follows from the fact that for
each fixed x¢[—1, 1] Iny(z, x)Inu is non-decreasing function of u in 0, 1).

Proof of Theorem 2. Let 0<a< 1. For |x|<a we have d\|1—a*<A(d, x)<2d
and in view of (26), (2.1) and (2.3) the inequality o (f: d),(|—a, a])=c(a, Ry f; Ald)y.»
holds true. Hence [lo(f; ),([—a, a)t'—Pdt<co. So f coincides a. e. on [—a, a]
with a continuous function F. But a is an arbitrary number less than 1. So f=F a. e.
in [—1, 1). Let g be gus from Lemma 4. From (3.2) we get

(38) WF 5 A),=t(F—g: A@),+1u(g: Ad),
Using (3.4) and (3.6), we obtain
(3.9) wg; Ad),=c(k) | (Ad)g® ||, = ckye f3 Ad)e.r

SN ol 3 MOt 20t B [ i[5 Ot 20l

From (3.7) and (2.2) we get 1
(3.10) wF—g: Ad)),=tF—g; Md)),—[_j;m,(F-g. x; 2v(d, x)ydx|'»

<2 [sup{1F()— )P IS, Ly—x|s kv(d, X)),
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Using Lemma 2 and (2.5), we get for each x¢[—1, 1]

(3.11) sup{|Ay)—g) | : W=, |y—x|=sky}
<ck, p) v | f—gl (Ix—ky, x+kv]N[-1, 1))

:-ZJ.*Z),( f—g; Olx—ky, x+ky]) -7 4t}
<clk p) {v="7 || f—gl((x—ky, x+Ry] N[-1, ””J“’*( f—&: DAlx—kv, x

+hy)t—Vedty<ck, p){v7 || f—gl([x—ky, x+Ry] N [-1, 1])+Zf.(f—g: u" )pp([x

—ky, x+ky)u'"""du}.

Applying (3.11) in (3.10) and using Minkowski’s inequality, Lemma 7, Lemma 6, (3.5),
Lemma 5, (2.3) and (3.3), we get

(3.12) ty(F—g; A(d)),=c(k, p){l_f: v(d, x)! {'m[_l_ulf(y)-g(y)l’dy dx]'e

[x—kvw,x+

+ f [ }T.( f—g: w2 ([x—ky, x+ky)u—r—"dx]"edu}
0 -1
) @
St(kv P){llf—‘QNp'*'zl_}l :{:(l)k(f-— &Yy “U. x»; dy mdx]l/’_%g}
<ok p) {nlf3 A(d))p.p+dllldfd [_j"l o (f—8& ¥ w((4k+2)u, y)):dy]llpu-l—w,du}

el ) (58D + 0 [0S @15 Dol

From (2.2), (2.3), (3.4) and (3.6) we obtain

(4242

(313) [ e A dus | 85 ) da

set) T g T+ )|t du

SR (A gD, | ut-rdusch, Ul S; Aldo

Now (3.8), (3.9), (3.12) and (3.13) prove (3.1).

We shall formulate without introd;clng function spaces two corollaries of T heo-
rem 2 which are analogs of Corollary 2.

Corollary 3. If k>2/p, 0>2/p and [Yt*u(f: A(f))pr)'lr‘dt={'<w amcl “ff
re is a continuous function F, F=f a. ¢, such that St (F; A(0)),0¢ dt)'e

ok, p).J. 16
Corollary 4. If k>2/p, 0>2p and sup{d="ty ;A(d)),.,,. <d<l}=J<
then there is a continuous /ufu'tlon F, F=f a. e. such ‘Lﬂ wWF; Ald),=c(k, p)Jd°.
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4. Remarks and generalizations.

4.1. Theorem 1 is true not only for the domains mentioned in the beginning of Sec-
tion 2. Without any changes in the proof we can get that Theorem 1 is valid for do-
mains which are translations and rotations of domains of the type Q=Q, X Qg+ XQ,,
where Q, is ecither R or [0, =) or [0, 2n) if the function is 2m periodical with res-
pect to x,.

Let Q possesses the following extension property:

(E) There is Q,>Q such that the Hausdorff distance between Q and R™N\Q, is
positive and for each f¢ B7F(Q) there is F ¢ L,(£,) such that Fla=f and

(4.1) js'w,,(F; 1),(Q)t 1 —mlrdt < c(k, 0, Q) ]?m,(f; 1), (Q)t—1—mP dt

for each small positive &.

For such kind domains we can prove (2.7) and Lemma 3 and therefore we can
get Theorem 1. Some domains possessing (E) are given in Corollary 1, Section 4 in [7].
These domains even satisfy the condition w,(F; £),(Q,) = c(k Q) @ (f:8), ()
instead of (4.1).

Another approach in generalizing Theorem 1 is to get Lemma 3 for more common
domains without extending the function and to apply Theorem 18.10 in [11] not only
for hypercubes. In this way we can get Theorem 1 for Lipschitz-graph domains (see
[7]) or which is the same for domains satisfying the cone-property (see [11], p. 118).

A third approach in generalizing Theorem 1 is to use if possible the inequality
1(f; 8),=c(k, m)3* L g—s| D¥f|, instead of (2.7). It is announced in [1] that this is
true for k>m/p and Q=[0,1]™.

42. We set K(f;t),=inf{|f—gll, + *Zipk||D%gll,: @€ W3} and K*(f; 1),
=inf{||f—g||,+218;3k £8||DPg ||,}, where the infimum is taken over all g for which

=B,k

the expression is finite. Obviously K(f; £),=<K*(f; ¢),. Theorem 1 in [7] says that
for Lipschitz-graph domains we have

4-2) ok, p, Qo (f; 0, =K(f: ODp=clk, p, Q@)(f; Oy

From Lemma 3 we get that K*(f; f)<c(k m, p)o,(t; t), for domains mentioned in
the beginning of Section 2 and hence F*(f; t),=c(k, m, p)K(f; ), In other words
the two K-functionals are equivalent.

43. Theorem 2 is stated for A(d, x)=d(y1—x?+d). It is possible to prove analo-
gous statements with functions of the type d(1—x+d)*(1+ x+d")* (a,y,>0) if we con-
sider the interval [—1, 1] and of the type d(x+d”)* for the interval [0, <) and so
on. For this purpose one should have a “good” intermediate function (cf. Lemma 4).
Such functions are constructed in [10] but the deviation is evaluated with another
type moduli. The proof that those moduli are equivalent to (2.3) is complicated and
will appear somewhere else. This is the only difficult step in the generalization of
Theorem 2 on this way.

Let us also mention that if we have proved an analog of Theorem 2 with a func-
tion & and if 8, is such that ¢8,(d, x)=8(d, x)=c8,(d, x) for each x €Q, 0sd=<c, then
the same statement is true with &, instead of &

44. In (3.1) we integrate up to (4k+2)d instead of up to d because we do not
use properties of the type
(4.3) W f3 A(d)ppsclh, M)l f; 8d))pp for each A1
It is possible to prove (4.3) for different functions &(d, x) if one has the equivalence

of 1,(f; 8d))s, with a properly defined K-functional. Results of this type will be gi-
ven somewhere else.
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4.5. Corollary 1 and Corollary 1 in [6] cannot be improved in the terms of Besov
spaces. Here we give the examples only for m=1.
a) It is not true that Br—Ax” for any ¢>1. This comes from the fact that for

g>1 Bj/» contains essentially unbounded functions. E. g. for gi(x)=|ln|x|* if |x|<1
and g(x)=0 for [x|=1 we have @,(g:; 8),=c(k, p, €)5'#|ln3*"! and hence g ¢ B} if
1—e) L
q>(b) lt) is not true that B:'_{’:A:’; for any ¢g<co. E. g. we set fo(x)=1—|In|x||—= if
x|<1/e and f(x)=0 if |x|=1/e. Then for k>1/p we have ©)(g; 8),=c(k p, €)d'»
Jlog 8—=—1 and 1,(fe; 8),=c(k p, €)3'7|In 8|—¢ and hence f.€ B} but fe€A)? forg<e2
4.6. Theorem 2 cannot be improved in the following senses:
a) The conclusion of the theorem is not true under the condition [i(#—%77,(f;
A(t))p.p)t 1 dt <o for any fixed g>1. The example is the same as in point 4.5. a): we

have (£>2/p) (g A(t))p.p=c(k P, e)t”’lln t*—' and g, is essentially unbounded.
b) The statement [{(£~%77,(f; A(f)),)t'dt <o does not follow from the condi-

tion ot Theorem 2 for any ¢<co. The example is similar to this one in point 4.5. b):
For fdx)=|In(1—x)—In2e—¢ we have (k>2/p) t(fa A()p,=clk, p. €)f7|In ¢|—<—!
and 1,(fo; A(8),=c(k p, E)P7|Int "

47. Let us compare Theorem 2 with Theorem 1 for m=2. In the both cases the
cristal orders are 2/p and they can not be improved in view of points 4.5 and 4.6.

This can be interpreted in the following way : moduli w(f i A(f),., and T (f; A(%),
posses some *“twodimensional properties”. Such conclusion is not very unexpected having
in mind that t,(f; A(f)),, characterizes the best approximation with algebraic polyno-
mials (see [4]), from one hand, and, from the other hand, the connection between the
algebraic approximations and the approximation on domains in the complex plane.
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