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POLYNOMIAL IDENTITIES
OF FINITE DIMENSIONAL ALGEBRAS

VESSELIN S. DRENSKI

We study the varieties of unitary associative algebras over a field of characteristic zero and with
a polynomial identity of degree four. The main result is that such a variety is generated by a finite
dimensional algebra if and only if it satisfies a standard identity. Analogous results are obtained for
the subvarieties of the variety defined by the commutator [x;,...., X4] =0 and for Lie algebra sub-
varietes of var sl,. :

1. Introduction. A class % of associative algebras is called a variety if # con-
sists of all algebras satisfying a given system of polynomial identities. By the Birkhoff
theorem, % is a varicty if and only if # is closed with respect to the cartesian pro-
ducts (C), the subalgebras (S) and the quotient algebras (Q), i. e. #=QSC%. Two
problems immediately arise: (i) Given an algebra R, find the polynomial identities of
#=var R=QSC(R); (ii) For a variety # with a T-ideal of identities U= T(%), find
an algebra R such that # = var R. The problem (ii) can be answered trivially, namely
that % =var F(%), where F(%)=K{(X)/T(%) is the relatively free algebra of countable
rank in . We are interested when a variety of unitary ,algebras over a field of
characteristic zero is generated by some finite dimensional algebra. Bearing in mind
that any finite dimensional algebra satisfies a siancard identity, we ask the converse

uestion :
y If a variety % satisfies a standard indentity, is % generated by a finite dimen-
sional algebra?

That seems to be a very difficult problem. The purpose of this paper is to give
an affirmative answer for the varieties with a polynomial identity of fourth degree.
We prove the following main result:

Theorem A. Let % be a variety of unitary algebras over a field of characte-
ristic 0 and satisfying a polynomial indentity of degree 4. Then % is generated by
a finite dimensional algebra if and only if a standard identity

Sp(Xys -+« +y X)=2(SigN O)Xoq1) **+ Xor)=0, o€ Sym (&),
holds for .

The proof of this theorem allows to find the algebras generating the varieties.
They are direct sums of some of the following algebras:

(i) the 2X2 upper triangular matrices;

(ii) the subalgebra (e,,, eg, fe,q, tey,) of the matrix algebra My(K[¢]/(#));

(iii) an algebra obtained by formal adjunction of 1 to a nilpotent algebra.

The method is based on the detailed description of T-ideals containing a polyno-
mial of fourth degree [1,2,4,8]. The idea is taken from (7], where an analogous result
is obtained for non-unitary algebras satisfying an identity of degree three. We establish
in the same way:

Theorem B. Let %, be the wvariety of unitary algebras in characteristic 0
defined by the left normed commutator (xy, ..., X44y|=0. Then ¥, is generat-
ed by a finite dimensional algebra if and only if a standard identity vanishes on .
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Theorem C. Let sly(K) be the Lie algebra oy 2X2 traceless matrices over a
field K, char K=0. Then U4 cvar sly(K) is generated by a finite dimensional algebra.

Recall that the problem of characterizing varieties of algebras over a finite field
and varieties of rings, generated by a finite object, was solved by I Lvov [5].

2. Preliminaries. We fix some notation: K is a field of characteristic 0; all as-
sociative algebras are unitary and over K; A=A(X)=K(X) is the free associative al-
gebra generated by X={x,, xo...-}; Ap=K(xy,..., x,,) is the subalgebra of A of
rank m; P, is the set of multilinear elements in x;,..., x, from A,. Let flx,, ...,
X,) €A, R be an algebra and let  be a variety of algebras. We use the notation
T(f), T(R), T(#) respectively for the T-ideal generated by f or containing all the
identities of R and %. We denote by the same (script or ordinary) letters the varie-
ties and their T-ideals: U=T(%). The relatively free algebras of # are F(%)=A/U
and F,(%)=A,/(UNA,). For a subset § of A and the canonical homomorphism
v:A-— F() we denote v(S) by S(#). If S is a graded vector space (with respect to
the natural grading of A or F(%)), then S™ is used for the homogeneous component
of degree n. Moreover, S"=XZS8®, k=n.

The symmetric group Sym(n) and the general linear group GL, act from the
left respectively on P, and A,. This action plays an important role in the theory of
Pl-algebras. We use N, (L) for the irreducible GL,-module related to {he partition
A=(ry ..., M) on 7. On the other hand, A is a right Sym (n)-module and Sym (n)

permutes the positions of the variables in x; ... xineAﬁ,',');

Xiyooo X, o l=xj ... X,
where o ¢ Sym(n) and jy=ios), S=1,...,n It is known that any irreducible GL,-sub-
module N,(1) of A is generated by a nonzero element
fOe oo xn)=Selxp o ooy X)) oo s Se(Xnr -+ oy Xx)E aO,

where a, € K, o € Sym(n) and &,,..., k, are the lengths of the columns of the dia-
gram [A]. We call f(x;, ..., xz) a standard generator of N,(%).

Let B, be the subspace of A,, spanned by the products of commutators, T,=P,
N B,. Any subvariety of % is determined by its identities from I (%), n=2, 3....
Moreover, I, and B{" are submodules of P, and A{M. It is known that

BD=N,(12), BR=N,(2, 1),
B =Np(3, 1)+ Na(2)+ Nu(2, 12)+ Np(19).

+ We fix  to be a variety with a multilinear polynomial identity of fourth degree.
When f¢ T, then f is equivalent to some of the identities

(1) [xa X1 X3, %,]=0,
(2) [xp x*=0,
(3)  llx1 xa) [x3 x]]=0,
4) Si(xy, x5 x5 x,)=0.
If f¢ I, then substituting 1 for some of the variables, we obtain [x,, x,, x;]=0
or [x;, Xxo]=0. Hence, as a consequence of f we obtain some of the identities (1)—(4).
We shall consider the cases (1)—(4) one by one.

3. Non-matrix identities. Let ¥', be the variety of algebras, defined by the poly-
nomial identity (1). It is known [2], that
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. - BW(¥Y)=B® for n<3,
BI(Y)=Np(2)+Np(2, 13)+Np(1%), BO(¥ )= Nu(2, 13),
BN ) =Nu(1™),  BE+(¥)=0, n>2.
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Py X1 % X)=0 [xy %°=0 1lx1 %2 ¥y x411=0 ¢

Fig. 1

The modules N,(1%") are generated by the standard polynomials S,,(xy, ..., Xg,). The
consequences of higher degree of the irreducible components of B,(¥";) are marked
by arrows at Fig. 1.

Proposition 1. Let % be a subvariety of ¥, and let % satisfy a standard
identity. Then U is generated by a finite-dimensional algebra.

Proof. Let U=T(%) be the T-ideal of % in the relatively free algebra FA(¥",) and
let Sy, (xy, ..., Xg,) € U. Clearly, there exists a canonical GL,-module homomorphism
v:B,(¥) — B,(%) and N,(1%) ¢kerv if k=n. In virtue of the complete reducibility of
the 6L,—module B,(7"),the module isomorphism B,(¥";)=B,,(%) @ ker v holds. Therefore
we can consider B,,(%) as a submodule of B,(¥"). Let B,(%)=ZN,(A) and let m exceed
the number of rows of the diagrams [A] (e. g. m=2n—1). Consider the finite-dimensional
algebra R=F,(%)/FX(%). Obviously R¢ %, i. e. B, (var R) = B,(%) and the modules
N,,(xz from B, (%) do not vanish on R. Hence B,(%)=B,(varR) and ¥ =varR.

et ¥, be the variety defined by the identity (2). By [2], B&(¥ ) =N,(3, 1)

+ N (2 12)+Np(19), BEUs) = Np(dy 1)+ Np(2, 19), BENUg) = Np(2n— 1, 1)+Np(1%7),
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BO (¥ 5)=N,(2n, 1), n>2 (Fig. 1). The irreducible GL,-modules N,(n, 1) and N,(12*)
are generated by [xy, Xy, ..., x;]=xX(adx,)* and Sy, (X, . .., Xg,).

Proposition 2. Let % be a subvariety of ¥, and let % satisfy a standard
identity. Then « is generated by a finite-dimensional algebra.

Proof. Let U=T(#)cF(¥,) and Sy, (x5, ..., X5) € U. First, assume I'j(%)=0
for s large enough, e. g. s=n. Then, as in Proposition 1, #=var R and R=F,(%)/F%).

Now, let T () + 0 for any integer n>1. We shall establish #=var(R, @ Ry).
The algebra R, takes into account the asymptotic behaviour of the identities for large
degrees n and R, gives the details for the lower degrees. It is clear from Fig. 1 that
there exists an integer n (e. g. n=2k+1), such that B{(%)=Np(s—1, 1) for s=n.
Therefore, N,(s—1, 1)cBY)(%) for any s>1. Let R, be the algebra of 2XX2 upper

triangular matrices, Rlz(' '). Then R, satisfies the polynomial identities (2), (3) and (4),
i. e. R, €7y and BY (var R))=Np(s—1,1). Therefore R, € %. Denote Ry = F,(%)/F (%)
and R=R, @ R, Obviously, the finite-dimensional algebra R belongs to %. Moreover

6) B (var R)=BS()

for s=n, since in this case BY (var R\)=B(%). The equality (5) holds for s<n as
well, because BY)(var Ry)=B$(%) for s<n.Hence (5) is valid for any s, and = var R.

Let the variety ¥’y be defined by the identity (3). The decomposition of B®(¥75)
and the consequences of higher degree are shown in Fig. 1. The generators of the
modules N,(n, 1) and N,(1%") are the same as for ¥°,. The proof of the following as-
sertion repeats verbatim that of Proposition 2.

Proposition 3. Any subvariety of ¥ satisfying a standard identity, is ge-
nerated by a finite dimensional algebra.

4. The standard identity of fourth degree. Let ¥", be the variety defined by the
identity (4). First, we shall consider the subvariety . =var My(K) of ¥, generated by
the matrix algebra of second order. It is known [1] that

B, (M#)=K+EZIN,(p+q+r p+q. p)

where p, g, r are non-negative integers, p+¢>0 and (p+g+r, p+q, p)+(1°y We
shall establish that any subvariety of . is generated by a finite-dimensional algebra.
For a multihomogeneous polynomial R(xy,...., X,) in m variables, we use the
notation A(xy;...; Xp @y, ..., U ... Xy) for the partial linearization of & in x; (i. e.
the multilinear component in #; of R(xy, ..., X+t -+ +Ug..., X))
Lemma 4. Let f(x, Xg X3)€ B,(#) be a standard generator of the GL,-mo-
dule N,(p+q+r, p+q, p). Then the polynomial

h(xy, Xg X3)=(¢—1){(g+ 1) f(x1; X2 [X1 Xa]; X3)+f(x1; Xg X33 X3 [Xy, Xa])}
_{(‘7+l)f(xl; X3 X3 (X1 Xa]; Xg)+f(x1 5 Xg X3 X335 X3 [%1 X2])}

is a standard generator of N,(p+q+r+1, p+g—1, p+1).

Prodf. Let S be the symmetric algebra of a linear space with a basis Sy(x, x;
X0, Ssu, x, x) (X0 Xj) (%0, x;, 6, 1 5i<j<k=m, and let GL, act on S in a na-
tural way, fixing the variable u. Then the element

&(xy, X X3)=SB(Xy, Xg X3) [X1, Xq|"x]
is a standard generator of N,(p+¢+r, p+q, p). The polynomial from S:
&i(xy X Xa W)=(g+1)8(x,; xp U; xg)+8(xy; X X33 Xy U)



.

OLYNOMIAL IDENTITIES OF FINITE DIMENSIONAL ALGEBRAS 2]3

=¢85~ (xy, Xa xia) [x1 xa) 7t x{ {(g+1)Ss (f!v )“t xla) [xy, 4]
iche PR el oS .

+ p(Ss(#, x‘l, "Ifn) [x1s xial‘*‘ss(”- )‘Cav fa) [x1 )IC1]+Ss("v f& x|x) [x1, x?])}

generates N, (p+¢+r, p+g—1, p). We have indicated by braces the positions of the
skew symmetric triples and pairs in g,. Analogously the polynomial

filxy, xa X5 @)=(g+1) flxrs Xy 3 X)+fl215 Xp X33 Xs u)
generates N,(p+q+r, p+g—1, p), when GL, does not act on the variable u. Now,
let go(xy, Xa X3)=S8(xy Xa0 X3) [X1, XJ91 X[71 €S generate N (p+g+r, p+q—1, p).
Consider the tensor product SXxNn(1?), where N,(12)=S is spanned by [x;, x;. The
element

gi(x1 Xq X3)=(g—1) ga(x1, X3 X3)X)[*1s X3)—glx15 Xg X35 X3)R[Xp Xal
=(g—1)S5(xy, Xg X3) [X2 Xo]" 2+ {[x1, X3]X)[xy, X3
L ol

+[f3’ f:]@[xu fa]‘*‘[xlav fs]@[xp ’fl]}

generates Ny(p+q+r+1, p+g—1, p+1). The same holds for
(g—Dg(xy, xo X [X1, Xa))—&(x15 X X35 Xs3 [X1 Xa])

and
h(xy, Xg X3)=(g—1) filxy, X3 X3 [0 X3])—fi(x1; Xa X33 X33 [x1, xa])

=(g—1) {(g+ D)fixy; xa [X1, X33 X3)+f(x15 %o X35 X3 [x1, xs])}
—{(g+ 1) flx1; x9 X3 [%1 Xg]; X3)+flx1; X X3 X33 X3 [x1 xa])}

Later we shall verify that A(x, xs Xx;)==0 in B,(.#) and this will complete the proof.

Lemma 5. Let O£f(xy, .. ., Xp) € Np(ho)= Bp(M), where ho=(po+qo+ Ton Pot qon Po)-
Then the polynomial identities from N,(u)=B,(.#) are consequences of f(x,, ... Xa)
for n=(p+q+r p+4q, p). if 2p+q9=2py+q, and n=3p+2q+r is large enough.

Proof. We use arguments from [8]. Without loss of generality we assume that
f=f(%,, X3 X3) is a standard generator of N,(A)=B,(#). In order to verify that
f(x1, Xg, X3)30 in B, (), it sufficies to establish f(a, b, )50, where a, b, ¢ are ele-
ments of My(K) such that [1]

ab=—ba=c[2, bc=—cb=a/2, ca=—ac=>b/2,

b (a, B]=c, [b, c]=a, [c, a]=0b,
) a’=b=c?=—e/4, |a b, b]=]a, ¢, c]=—a,
aS;(ada, adb, adc)= —2a.

The polynomial f(x,, xs [¥, X,]) is a standard generator of N,(2p,+¢o+ 7o 2p,
+¢,) and f(a, b, [a, b))=f(a, b, c)+0. Therefore, Npu(2po+ o+ 7o, 2P0+ qo)= Bu(-#) fol-
lows from f(x,, Xs Xs). Assume that 2p+q¢=2po+q,. We shall find an integer r such
that Nm(p)= B, (#) is a consequence of f(x,, Xy X3) for p=(p+q+r, p+q, p). We
use descending induction on ¢. If ¢>0 we fix a standard generator of N,(n)

(M) fulxn x5 Xg)=[x3 x,] (ad x;)'S5(ad x,, ad x5, ad x3) [Xg X, """ € Bu(H).
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For ¢=0 the generator is
(8) fulxy, xq Xx3)=Z(sign o)xony(ad x,)"S2! (ad xy, ad xy, ad x3) [Xo2), Xo(3)], O € Sym (3).

Having in mind (6), we verily that fu(a, b, ¢)=-0. Let fu(x,, x5 x;3) follow from f(x,,
Xy, X3). By Lemma 4, the polynomial

h(xy Xg X3)=(g—1) {(g+1) fulx1; Xa [X1 Xs]s xa)+fu(X15 Xo X35 X5 [y, X))}
—{(@+Dfu(x15 X x5 [X1 X5 X3)+fulX1s Xan X3 X33 X3 [x1, X))}

belongs to N,(p+q+r+1, p+g—1, p+1) and is a consequence of f(x, x5 x3) as
well. Again A(a, b, ¢)=-0. Similar considerations carried out in (8], show that all mo-
dules N, (p)=B,(-#) belong to the T-ideal T(f) of F(#) for p=(p+q+r, p+q. p) it
2p+q=2p,+q, and n is large enough. _

Lemma 6. Let E,=K][t]/(**') be the factor algebra of the polynomials in one
variable modulo the principal ideal generated by t**'. Let us denote by R, the sub-
algebra of My(E,) generated by e,,, €y, te,y, te,. Then R ¢ .# and

B,,,(var Rs) o 2:/Vm( p)c Bm("):

where p=(p+q+r, p+q, p) and 2p+q=s.
Proof. The elements

a=—1/2(e,'1—e,,)y’:-l, b=1/2(ey 2+ em)\/j' c=1/2(e,3—ey,)

satisfy (6) and f.(a, b, ¢)==0 for any standard generator f(x,, Xy X3) of N, (L)<= B,(.#)
[1]. It is clear that R, ¢ .#. Moreover, a, tb, tc ¢ My(Ey) and fu(a, tb, tc)=t** fia, b,
¢)+0 if 2p+g=<s. Now, assume 2p+¢>s. It suffices to substitute for x;, x5 X3 the

elements x,={(f)a+tn(6)b+10,¢)c, G My 0, € E
Then in (7) and (8)

[xg, 1] = £(£(0,ng— Oan )@+ (§,09—Ca0,)0 + (0, 8y —nu8y)e,
& om 6

Syadx,, ad%y, adx;) =2 G2 M2 03| Syada, adb, ado),
Gy Mg 93‘

fu(%y Xg0 Xa) =004k, =0,

where &, ¢ My(E,). Hence, the modules N, (k)< B,(-#) will vanish for R, if 2¢+¢>s.

Proposition 7. Any subvariety of #=var My(K) is generated by a finite-di-
mensional algebra.

Proof. Let #c—.# and U=T (%) be the T-ideal of % in F(#). If % =4, then
4 is generated by the four-dimensional algebra My(K). Now, assume that #=.# and
B,(#)NU=EN,(\), where A=(p+q+r, p+q, p)€l. Denote by ky=(po+go+7o Po
+¢o Po) the partition from / with a minimal value of 2p+g¢, and let s+ 1=2p,+ qo.
In virtue of Lemma 5, there exists an integer n, such that N,(p)<=B(A)NU if
n=3p+2q+r=n, and 2p+q-s+1 (Fig. 2). Let R=R, D Fy(u)/ Fi{%). By Lemma 6,
R€%. As in the preceding propositions we conclude that % =var R.

Now we shall consider the variety ¥, defined by the standard identity (4). Ke-
mer [4] proved, that T(My(K))/T(S,) is spanned by Xx;... Xi (i o v+ Xinys ) Xty

o Xy (X s Xy ) WHeETE G e <i, nz0. Here g and k are the linearizations
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of the polynomials [[x, y]?, x] and 2[x, y]?+[[x, ¥] [x, ¥, y], x]. respectively. Combin-
ing this description with the arguments from [6] we easily establish that

T(My(K)) N B"/(T(S,) N B@)=0 for n>6.

A=(p+qtrn p+q. p)

9
i B0 % 3 4 5 6 7 8

o e O R e
a e RN RS e
e SRS RRAN
MO EINANRNN

ACINNLN

8 © o o oo
7 o | o o o offo o
6 o o o ° °
5 ° ° o o
£ ° o ©
3 °
2 °
Fig. 2

The proof of the next lemma follows immediately.

Lemma 8. Let fi(xy,..., Xp)=fo(Xy ..., Xn) be an identity for My(K). Then f,
and f, have the same consequences in BU"'X¥",) modulo T(#) for n=6 and the same
consequences in B((¥"y) for n>6.

Proposition 9. Any variety satisfying S.x,, x3 X3 x,)=0 is generated by a

finite dimensional algebra.
Proof. Let #cv¥",. If #=%, then the arguments from the proof of Proposition

2 show, that @ =var(My(K)® F,(%)/F] (%)) for some integer m (e. g. m>6). In the
other case, by Proposition 7, %) .# is generated by a finite dimensional algebra R.
It follows from Lemma 8 that % = var (R ® F( %)/ Fl(¥)).

5. Proofs of the main results. Theorem A is an immediate corollary of Propo-

sitions 1, 2, 3 and 9.
Froof of Theorem B. Let #— 2, satisfy a standard identity S,(x,, ..., x,)=0.

By [3], the Capelli identity
A Xpseees X5 Yoo oos Your)=Z(sign o)xo) NiXo@ « « oy Yp—1Xotr)=0
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follows from S,(x,, ..., x,)=0 for some 7. The Capelli identity shows that in the de-
composition F,(#)=XN,(\) the diagrams [A] have less than r rows. Hence, # is ge-
nerated by its relatively free algebra F,_,(%). It was proved in [6] that B (Z,)=0,
if n is large enough, Therefore, there exists an integer n, such that B (%)=0 for
n=n, Consequently, as in Proposition 1 we obtain that #=varF, (%) F» (%)

Proof of Theorem C. Denote ¥ =varsly(K). It is known that F',,,(V) can be
embedded as a Lie algebra into the adjoint algebra of F,(#)and F,(¥)=N,(1)+F,(¥)

(| B(#). Moreover, it follows from [1] that
Fu(7) (1 By(M)=ZNy(1),

where p=(p+q+r, p+4q, p), p+¢>0 and g or r is odd. In the proof of Lemma 4
we found out the standard generator (x,, X, X3) by linearization and substitution of
Lie elements. As in Lemma 5 we obtain that the polynomials from N, (n)c F,(¥") are
Lie consequences of those of N,(&,) if 2p+¢=2p,+¢q, and n=3p+2¢+ris large
enough. Then we repeat verbatim the proof of Proposition 7. The finite-dimensional
algebra R with #=varR=¥" is R=Ls+F, (%)/F} (%) and L, is the subalgebra of
sly(K[t]/(£+Y)) generated by e;,—eqo, L€y, teyy.
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