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' B-COMBINATORY ALGEBRAS
J. ZASEV

Particular algebraic systems are introduced with a view to generalize the recursion theory in both
iterative operatory spaces (Ivanov [3]) and AC-applicative systems from [10]. Some general conditions
for such algebras calied ‘B-combinatory algebras’ are studied under which that generalization is pos-
sible. The main result gives an expression of the least solution of an arbitrary inequality in a B-com-
binatory algebra in the terms of that for a single inequality of special simple kind.

There is an elegant and natural abstract algebraic generalization of the usual
theory of recursive functions based on the concept of operatory space, which was in-
troduced and studied by Ivanov in [1] —[4]. As sources of that generalization we
should mention also the works [5] and (7] and especially the fundamental works of
D. Skordev ([6] and others) on the concept of combinatory space. On the other
hand, there is an elegant algebraical treatment of the elementary theory of recursively
enumerable sets based on the Plotkin’s model Pw of the A-calculus and considered by
D. Scott in [8]. An abstract treatment of that kind in the spirit of Skordev’s com-
binatory spaces was given in the thesis [9] (the main results concerned are shortly
presented in [10] and [11] and another exposition is given in [12], which is more
closely connected with the model of Plotkin). In that treatment, partially ordered al-
gebras are used, called in [10] ‘AC-applicative systems’. In the present work we shall
consider a possibility of uniform exposition of both above mentioned generalizations
of the usual recursion theory, Ivanov’s recursion theory in operatory spaces and re-
cursion theory in AC-applicative systems. For that purpose we shall introduce par-
tially ordered algebras, which are essentially a generalization of both operatory spaces
and AC-applicative systems. Those algebras will be called ‘B-combinatory algebras’.

1. Let # be a set in which a binary operation ¢, y— (9y) (non-associative in ge-
neral) is given, which we shall call multiplication. By letters like ¢, v, x, 9, @, etc.
we shall denote arbitrary elements of # and we shall use the left grouping of bra-
ckets: 9o0,0g... 9, means (...((¢,9,)9;)...9,). When in F elements 4, C and D
are given, such that the following identities are fulfilled in & :

(1) Agyx=0(vx)

@) Co(Dyx)=oy*,

then we shall call # a ‘preassociative combinatory algebra’. Special cases of preasso-
ciative combinatory algebras are semigroups with a left unit and AC-applicative sys-
tems from [10]. A preassociative combinatory algebra # will be called partiallv or-
dered if there are given a partial order = in & and an element O¢# such that for
all o,y, ¢’ and ' in Fos¢' &y=y' = oyse'y’ and O=<o.

The main definition in the present work isthe followingone: aB-combinatory
algebra is a partially ordered preassociative combinatory algebra & in which a bi-
nary operation ¢, y— (¢, ¥), called ‘branching operation’, is given as well as elements
I, D, J,E, E, E,, T, F, such that the following conditions are fulfilled for all ¢, v, ¥,
o\ in ¥
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228 J. ZASEV

with respect to that order for each x-sequence #,€¢ F™®, and that is N{Fc¢F™: (y1<x)
(#.< #)}. Define in #™® a multiplication and a branching operation thus:

FoF1={3€F 1 3003 01(0€F0& 0,67, &9=0¢,0,)};
(Fo F)={9€¢F: 30,3 01(0o€ F0&0,€ I, &3=(9 91))} 5

where #,, £, ¢F™. To see that #,#, is closed under sup.cx suppose 9. ¢#,f, for
all 1<x. Then 8,<¢%!' for suitable x-sequences 9'¢ F (1<%, 'i<2), and therefore
SUP.cx 9 = (SUPicx 0°) (Supicx @) and sup.cx9.€ £ f, since sup.<x9!€f, (i<2). So
oI €F™ and similarly (F,, #,) € F*. Define for every ¢¢F the element ¥ e FM
as {3¢F: 9=q}.

Proposition 2. Under the presuppositions above F%™ is a B-combinatory al-
gebra with respect to O*, A* C*, D* I*, D* J* E* E;, E}, T* F* as basic constants.
The mapping ¢ — ¢* is a monomorphism of B-combinatory algebras F —%™ and
(Supicx ©)* =sup.<x @, for each x-sequence ¢.¢F.

The proof of the Proposition 2 is routine by the definitions. As an illustration we
shall consider the checking of the condition B6 in #F®: Let #o, f,, f3€¢F ™. We have
to prove that

(EsSo I w Er I INE =TS0 F1)-

Let j':(E;j,;o, E\f.%,) and ?E/’E". Then 39=%¢ for suitable 9'¢ ¢’ and e<E.
Therefore 9’§(99. 9,), where 9, € E;#,f,(i<2), and similarly 3,< vy, for suitable y, ¢ E',},
and ¢,¢#,. Again y,<g;y, where ¢ <E; and 1 €S Let x=sup{xy x,}. Since =2
the element y is correctly defined. Then

9<9e=(90 9))e=(VeP0r V191)E=(EoXoPor €17191)E
<(Ex90 E\x91)E=2(90 9,) € Fo(Fo» 1),

and therefore 9¢.#,(fo £1). To prove the reverse inclusion let 8¢ #y(f,, #,). Then
3=<0,(9o ¢;). Where Q€ J,(i<3), and

9< 0g(Pgr 01) = (Eo®290 E10:201)E € (EoI 250 E1I 25 )E*.

By the Proposition 2 we may consider F ™ as an extension of #, identifying ¢
with @* We shall adopt here this convention till the end of 2. ”
Proposition 3. In the above presuppositions let

8) asup @, =sup (ag,) and (sup ¢,)v=sup(¢\v)
1<% 1<% <x <x

for all a¢F, veN and each x-sequence ¢.¢F. Then the conditions 11, 12, and 13
are fulfilled for the extension F™ of #.

Proof. For every J¢F® let (a\J)={3€¢F: ad¢ #}. The set (a\f) is non-
empty since aO=0¢J. It follows easily by (8) that (a’\ #)¢ #©9. Obviously a(a\f)
—a*(e\J)< S and if ' ¢F™ is such that af’C #, then for each 3¢’ ad¢ g
and therefore #’ < (a\#). That proves I1. The proof of 12 is similar and I3 is
obvious.

Corollary 1. Let #,be a B-combinatory algebra, let F be an extension of ¥,
and let » be the first infinite ordinal. Suppose that the presuppositions of Propo-
sition 3 are fulfilled, (8) holds for each ve¢ ¥, and for every sequence @,¢F (i<x)

9 "“P (2, 9)=(/, sup 9)).
<% <%
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Then if for every monotonically increasing sequence ;¢ F, the supremum Supicy @;
(in #) again belongs to F, then F™ is an iterative extension of F,.

Proof. By the Propositions 2 and 3 #®) is an extension of &, satisfying Il, 12,
and 13. To check [4 define a mapping L: F*—F& by I'(9)=0(/, 9)y. It follows from
(9) and (8) that for each sequence 9,¢# (i<x)

sup I'(8;) =T(sup 9,).
i<x i<
Then for every sequence #,¢ #™ the set
J'={8¢F: F(S)ESEPF(Ii)}
<%
will be a x-ideal. But #, = #’ for each i<x and therefore

sup £, = #', whence {I(9): S¢sup#,} < supI'(#).
i<% <% <%

Using here the definition of the multiplication and the branching operation in F™ we
can see that T'(supicx ;) < supi<x.f; and the reverse inclusion is obvious, since the
mapping I’ is monotonically increasing. Then a usual argument (see, for instance, Pro-
position 1.1.3, p. 224 in [6]) shows that $y=sup;«xT%(0O) is the least solution of
I'(9)<39 with respect to § in F). By the Proposition 2 and the supposition that &,
is closed under sup;, of monotonically increasing sequences it follows that 8,¢ #,.

Corollary 2. Let #, be a B-combinatory algebra with an extension ¥ and
let » be a cardinal number, greater than the power of ¥, Suppose that ¥ and %
satisfy the conditions of Proposition 3 and %, is closed under supremum sup.<x @;of
monotonically increasing w-sequences ¢.¢F. Then F™¥ is an iterative extension of F,.

Proof. As in the previous proof, F® is an extension of #, satisfying I1, 12,
and I3, and define I' in the same way. Then by induction on i define for everv or-
dinal 1 an element @,¢ #™ thus: :

(10) @;=sup ['(gy).
n<e

A usual argument (see, for instance, the proof of Proposition 1. 1. 5, p. 226 in [6])
shows that the sequence ¢, monotonically increases and if A is the least ordinal for
which @x»=@a41, then ¢, is the least solution of I'(8)<9 in #). By (10), using Pro-
position 2 and an induction on 1 we may see that ¢,¢ # for each 1<x. Since the
sequence @,(1<x) monotonically increases, the same induction shows that ¢,¢ %, for
each 1<x. But A<x because x is greater than the power of #, and therefore @it #,.

The corollaries 1 and 2 are analogous to the properties (x#) and () from (1]
and [3). We can easily extend them so that they may comprise the case with a non-
trivial rank function in the sense of [3]. The conditions of the corollaries 1 and 2 are
usually satisfed with #, as # when sup.«x@, exists in &, for every x-sequence
@. € F, Such is the case with all special instances of the example 1 from [10] and [12].
Otherwise, to apply those corollaries we should firstly find an extension # of #, in
which that supremum always exists. As an illustration we shall consider the following
example:

Example 3. Let #, be the operatory space in [2], example 1. Then &, is the
set of all partial functions ¢: M—-M, where M is a set in which two disjoint subsets
My M,, two mappings f;: M—M,(i<2), and a partial mapping f: M—M are given
such that the domain of f contains M, UM, and f{ f(x))=x for all x¢M, and i<2.
According to example 2, #, is a B-combinatory algebra in which < is the relation
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of the inclusion of graphs, the multiplication is the composition of partial functions,
and the branching operation is defined by

o( f(x)), it xeM,
(o) (x)=1{ w(flx) if xeM,
undefined otherwise.

The mapping x— x is the value of all basic constants of #, except T, F and O whose
values are f,, f, and the least element of #, respectively. Let & be the set of all
many-valued partial mappings ¢: M—M. Define in F= as the inclusion of graphs,
and the multiplication as the composition of many-valued mappings: ye(o,v) (%)
<>32(2€v(x) &y € o(2)).

Define branching operation by

VE(@, w) (x) <> (xeM& y € @(f)V (x € My &y €w( f(x))-

Then (as is shown in [3]) # is a B-combinatory algebra, which is an extension of #,
Obviously sup,«x @, exists in F for every x-sequence ¢.¢# and every ordinal x, and
F, is closed under sup,«x of monotonically increasing x-sequences. It is easy to see
that the conditions of Proposition 3 are fulfilled and we may apply corollary 1, accord-
ing to which #@ is an iterative extension of #,.

3. From now on, the letters like £,s,7, f,, ¢ etc. will denote terms, defined in-
ductively as follows: the variables (x, X;, Xy, ...) are terms; the symbols for the basic
constants O, A, ... (denoted as the constants themselves) are terms; if ¢# and s are
terms, then (£s) and (¢, s) are terms. Let # be a B-combinatory algebra and let © be
an evaluation in #,i e. © is a function ©: X—% where X is a finite
set of variables. Suppose that the term t does not contain variables out of X. Then
t~he value 6(f) of ¢ by © is defined inductively thus: @(Q:G)(t), ~if t is a vgriable;
O(f)=y, if tis a symbol for some basic constant Y€ O((£s))=0O(t)O(s) and O((¢, s))
=(©(¢), ©(s)). The left grouping of brackets will be adopted for terms fuf,fy...¢,
= (.. (Lt )ts) - . . £,), where=will denote the identity of terms.

The expressions having one of the forms

Cl. It—t;

C2. Atytyty—ty(tty);

C3. (Etty, Eitty) E— Kty ty) 3 -
will be called contractions. Till the end of tne paper let Y(x), Y (x), ¥Y"(x) etc. denote
terms having at most one occurrence of the variable x, and let Y{f) be the result of
substituting ¢ for x in Y(x). Define- some notations by the equivalences: £ii-s<>

1
“there is a contraction p-— g, such that ¢£=Y(p) and s=Y(q) for suitable Y(x), in
which x occurs” ;¢ n;o s «>“there are n+ 1 terms Sy, 8y, ..., S, Such that s, I 815eees Sn—1 I+ S

and sy=t and s,=8"; ti»s<>3nti=s);tis normal’ <>y (¢~ s = t=5); and txs<>

qor every B-combinatory algebra #. and every evaluation ©: X — % such that X
contains all variables in £,s, ©(t)=©(s)”.If p--- ¢ is a contraction, then obviously p=gq.
Therefore

(11) ti-s = xS,

Denoting by m(f) the number of brackets (in £ we see from C1—C3 that m(q)<m(p))
for every contraction p— ¢. Then for each n ¥ v

(12) t a8 = Ln(s)<rg(t)
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Therefore for every term ¢ there is a natural number n<m(f) and a normal s such
that £11»s. That term s will be denoted by #¥ and we shall call #¥ ‘the normal form

of #. The last definition is correct by the Church-—Rosser property for —:
Proposition 4. If ti~¢t, and ti~t,, then there is a term s such thatt,|-s
and t |- s.
Proof. At first we shall show that

(13) Eloty &t oty >3 5(t I= s & £y 1= ).

It is sufficient to consider the case when {—Z, is a contraction. The general case is
obtained then easily by an induction on the length of the term £ Let p—g¢g be a con-
traction such that £=VY(p) and ¢,=Y(q) for suitable Y(x), in which x occurs.
If Y(x)=x then ¢{—¢ is a contraction, whence by C1—C3 #,=¢, and (13) is trivial.
Let Y(x)Fx and consider the possible cases foer the contraction £—#,:

1) £—1¢, has the form of Cl. Then Y(x)=/Y,(x) for suitable Y (x) such that
t,2=Yo(p) 1If s=Yy(q) then ¢ l+§ and t1=lYo(q)|1-l»s.

2) t—t, has the form of C2. Then Y(x) should be of the form AYy(x)Y;(x)Y(x)
and t,=Y(p) (Yi(p)Ya(p)). 1f s is the term Y(g)(Yi(q)Yo(q)) then Zl= s and
t,=Y (9 Il s.

% 3) t—1, has the form of C3. Then there are two possible cases for the term
(x):

3.1) Y(x) has the form (E,rY,(x), E;rY\(x))E, where r does not contain x. Then
defining s=r (Yg), Y.(¢)) we have £,=¥(g)/l> s and to=rYo(p) Yi(PD 113 8.

3.2) Y(x) has the form (E,Y'(xX)ro, E Y (p))E or (EY'(p)re, EiY'(x)r)E, where
rory does not contain x. Then ¢=Y'(p) (fo, 1y I § and t,=Y(q) I (EY'(Q)re
E\Y'(q) r,)E‘|—l~ s, where s=Y’'(q)(ro. 7).

The Church—Rosser property for |- can be obtained easily from (13) since by
(12) we may use induction on m(f) to prove

(14) til~ty &t oty = 3 s(ty 1> s &ty 1= 8).

The basis of the induction is trivial since if m(f)=0 then #i—¢, is impossible by (12).
mit) o1,

In the induction step we shall use a second induction on n to prove that for all £, ¢
such that if ¢ ~ t, and ¢ Hrtl then there is a term s such that £,/~ s and ¢, |1» 5. If n=0then

t=t, and we may take ¢, for s. The case n=1 is immediate by (13). Let n>1 and
assume the hypothesis of the induction for n—1. Then tl'":‘t’ and t’nl—o t, for suitable ¢’

and by the hypothesis of the induction there is a term s’ such that #'jj- s’ and ¢, lI»s".
By (12) m(¢')<m(t) and from ¢ |-s" and t';:T t, by the hypothesis of the former in-

duction there is a term s such that s’ = s and £, /1~ s. Then from ¢, II-s it follows also
t,I»s. That finishes both induction steps and proves (14). Finally an easy induction
on n shows that

ti=ty & tn:t, => 38(61-8s &t 11+5)

and proves the proposition. We shall omit the details.

4. From now on, a term £ will be called an A-term if only the (symbol of the)
constant A and the brackets (,) occur in £ Then for each ¢ we shall define two
terms £* and £° inductively thus:
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1*) if £ is a (symbol of a) constant or a variable or an A-term or there are ¢,
and £, such that ¢=(f,¢,), then t*=/and °=t¢;

2%) if £=1t's where s is a constant or a variable or an A-term, but £ is not an
A-term then f*=¢' and f°=s;

3*) if f=¢t's where s=(s, s,) for suitable s, and s, then t*=(E,t's, E,t's)
and °=F;
. Sg*) if t=t's and no one of the previous three cases holds then ¢*=At's* and

Using an induction corresponding to the definition above we easily see that

(15) t*t°)+¢ and
(16) if # is normal then such are also #* and #°.

Till the end of the paper we shall fix a B-combinatory algebra #, an evaluation
0,: X—#, and a variable x such that x¢X. All terms below will be supposed not
containing variables out of X |J {x}. The set of all such terms will be denoted by Z and
let 7,={¢t¢7 : x does not occur in #}; €={¢: t¢X or ¢ isa basic constant symbol};
o ={t: t¢€ or t is an A-term}. We shall write £ for ©y(f) if ¢, and if £¢T we
shall write #(¢) for ©(f) where ©: X |J {x} — & is the evaluation © such that ©( y)=0( y)
for y€X and O(x)=o.

Definition. A function k: A is a code function for a term r, and an
element o¢F is a reading element of k iff the following five conditions are satisfied
for every te¢T :

(KO) k(¢)=k(tV);

(K1) if t=1I then ok(t)=DTI,; 4

(K2) if t+1,t is normal and t°¢ o then ok(t)=DFDk(t*)t%);

(K3) if ¢ is normal and t°=(t, t,) then ck(t)=DFJ k({,), k(t,)));
(K4) if t is normal and t°=x then ck(t)=DFDk(t*r)).

Now the main result of the paper is the following theorem:

Theorem 1. Let #, be an extension of F satisfying 11,12 and 13. Let k
be a code function for rand o be a reading element of k. Suppose that o ¢ F and »
is the least solution in #, of

(17) AAC(I, CE)o<E

with respect to &. Then the element y—=ok(x) is the least solution of r(§)s& with
respect to § in F,.

Proof. Denote AAC(/, CE)s by Q(§). Then for every ¢ ¢ #, and for every normal
t€J we have

(18.1) if £—=1 then Q(o)k(t)=I:

(18.2) if £417 and £°¢ o then Q(o)k(t)=Qk(t*)i°;
(18.3) it 0=(t, t,) then Q()k(t)=(k(t,), ok(t));
18.4) if £=x then Q()k(t)=k(t*r).
lndeed.

Q(o)k(t) = A(C(1, Co))ok(t)=CU, Co) (ck(?)),
and by (K1)—(K4) we have: if £=/ then '
Qe)k(t)=C(l, Co) (DTH=(I, Co)TI=1l=1;
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if £/ and {°¢ o/ then
0)k(t) = C(I, Co) (DFDE(EF0) = (I, Co)F(DR(t*)1%) = Co(Dk(£* [19)= ok(£*}E%;
if £0=(¢,, ¢,) then
Q(o)k(t) = C(l, Co) (DF(J(k(ty), (t1)))
=(I. Co)F(J(k(ty), k(t,)))=Co(J(k(to), k(t))=(0k(to) Ok(1));
and if £2=x then
Q(o)k(t)= C(l, Co) (DF( Dk(t*1))) =(I. Co)F( Dk(t*r))
= Co( Dk(t*r))= Qk(t*r).

Since the mapping Q: &, — %, monotonically increases and Q(ew)<o then Q(w®) again
is a solution of (17) and since ® is the least solution of (17) in #,, then 0o <Q(o)
and therefore Q(®)=wo. Thence by (18.1)— (18.4) we obtain that for each normal £¢J :

(19.1) if £=1 then wk(f)=1;

(19.2) if £/ and ¢ then ok(t)=ok(t*)f°;
19.3) if £0=(f, ¢, then wk(t)=(ok(t,). ok(t));
(19.4) : if =x then ok(f)=ok(t*r).
(Now we shall show that for every £¢J,

(20) ok(t)=t.

Every term £¢7, regarded as a word has the form ww, where the word @, con-
tains the letters A,(,) only, and w, im empty or the last letter in w, is different
from A, (and). Then by a(f) we shall denote the number of letters in w,. Let b(f) be
the number of ( in ¢ and denote by c(f) the number of occurences in £ of terms
q € €\ {A}, which are out of the scope of every pair corresponding brackets (,) in &
Denoting by o, the first infinite ordinal let u(f) = b(t)w? + c(t)w, +a(t). Then by induc-
tion on p(f) we shall show that (20) holds for every normal £€7,. Suppose that €7,
is normal and consider the cases for £:

1. teof. Then if ¢=/ (20) is the same as (19.1) and if ¢4/ then by (19.1) and
(19.2)

ok(t) = ok(t*)F = ok(I)i =1t =1.
2. t=(tyt,). Then £,€T,, ¢, is normal and p(#)< =n(f) since b(t;)<b(f) for each

i< 2. Thence by (19.3) and the hypothesis of the induction @k(f)=(@k(Z), ok( t,))=(?o,fl)=t.
3. No one of the previous two cases holds. Then ¢ should be of the form

(21 tealidly s G B)=5)

where s¢.of or s is of the form (s, s,) but ¢,s isn’t an A-term. To see that p(£*)<u(f)
when s¢.«, consider the following two cases:
3.1. s¢ ¥\JA}. Then by the definition of #*

(22) 12 =(Aty(At, ... (Abmaty) . ..))-
By (21) and (22) we see that c(£*)<c(f) and b(£*)=b(f) whence p(E*) < u(e).
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32. s is an A-term. Then ¢, must contain a letter different from A, (and) since
otherwise 7,5 would be an A-term, and (22) holds again. Then a(t*)< a(t), b(t*)=0b(¢t)
and c(£*)=c(¢) whence p(#*)<p(f).

Theg:forg yherlse.g we have k(t*)=1* and by (19.2), (11) and (15) wk(f)
=R(t*)E°=1t*t°=¢*°=t. It remains to consider the case.

3.3. s is of the form (s, s;). Then defining inductively ¢"=#* ane t*‘*':(t*‘)* we
have #" = (¢, #”’) where

U= (bt ... (tp_ySo)-- ) t'=(tt ... @, _\s1)..-));

t;,_l :Eotm—lv t’m_g :EO(Atm—Q)v t:’.~3 :E()(A(Atm_a)), ooy
£ = Etmo, £ = EAtus), £ =E(A(Atm3)).....

Obviously b(#)<b(f) and b(¢")<b(f) whence w(#)<u(f) and w(¢"")<n(t). Therefore
wk(t')=t" and wk(t'’)=t'", and by 1¥) and (19.3)

ok(t**) = (0k(t'), ok(t"))=@F", £7)=1"
But

~

wk(t)= 0k(t)F0 = k()L 0= ... = ok(FF)" 0 . | Fo
_prEmto | jo_fnoigate | Fo_ . _pR_F

That finishes the case 3. and proves (20) for normal £ Then for an arbitrary £¢ 7, by
(KO) and (11) we have

ok(t)= 0k(tV) =tV =1.
The next step will be to prove that if N+ E, t¢7, and £s is normal then
(23) f (0k(s)) < wk(#s).

Suppose that N+E and using Il and I2 define for all £ s¢J an element 9, ¢ #

by 9,_,:((7\wk(ts))/k(s)). Then using I3 define 8,=inf {9, ;: ¢¢7, and #s is normal}
and 9=inf{9, ©}. 9 is the greatest element in #, such that 9<o and for all ¢, 5¢7

(24) te T, & ts is normal = 7(9k(s))< wk(ts).

Therefore to prove (23) it is enough to show that ®<9 and since o is the least so
lution of (17) in #,, it will be enough to show that Q(8)<9. But Q(8)<Q(0)<w, and
therefore by the definition of 9 it will be enough to prove the implication

te T, & ts is normal = £(Q(9)k(s))<wk(ts).

To do that let W=7 (£(9)k(s)), assume the hypothesis of the last implication, and con-
sider the cases:

1. seof. Then if s=/ then by (18.1) Q(O(s)<5, and if s+/ then by (18.2),
1*) and (19.1)

Q(9)k(s) = Ik(s*)s* = Ok(/)S < wk(l)s =15 =5.
Therefore according to (20) W7 § =15 = ok(ts).
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2. s°¢o/ and s¢ .. Then (ts)*=Ats* and (£5s)°=s° and by (16) flts" is normal.
Besides that according to (18.2) Q(9)k(s)= 9k(s*)s® whence ¥ =7 (3k(s*)s%)= At(9k(s*))s°
and by (24) and (19.2) ¥ = wk(Afs*)s’ = ok(ts).

3.5% = (s, 5,). Then according the definition of s° s=(s,, s,), and (t8)*=(Etsg, Eytsy),
and (¢s)° —= E whence by (18.3) Q(8)k(s)=(8k(s,). 9%(s,)) and therefore

W =T (9k(S0). 9k(s1)) = (Eof (Sk(s0))s Ert (SK(s))E.
But Efts; is normal for each /<2 since £s is normal, and thence with the help of (24)
(19.3) and (19.2) 5
V¥ < (0k(Ets,), Ok(E ts)))E=ok(Etsy, Ets)E=ok((ts)*)ts)" = ok(ts).

4. s9— x. Then by (18.4) and (KO) W=7 (9k(s*r)=1 (3k((s*r)V)). To be able to
apply here (24) we should know that #(s*r)V is normal. But otherwise a contraction
of the form #(s*)¥— ¢ must exist since ¢ and (s*r)V are normal. By the normality of
¢s that contraction can be only of the form C3 and then (s*r)V=E, which is pos-
sible only when s*=/ and r¥=E. That can he seen easily by the normality of s*.

The contradiction with the assumption r¥=E shows that #(s*r)V is normal, and ap-
plying (24) we have ¥=ok({(s*r)V). Now if s=x then (£s)*=¢ and

(HS* MWV =((s* )N = (U =(tryN=({ts)*r)V -
and if s==x then (£s5)*= Afs* and again
(Hs*1)M)Y = (Us* )N =(Ats*r)V=((ts)*1)".
But s°=x and therefore by (KO) and (19.4)
Y < 0k((Hs*r)V )N = ok((1s)*r) = ok(ts).
The proof of (23) is finished. Now let 7, be the set of all terms of the form
tt,...(tmo1x)...) Where £, ..., tn are in F, and denote by p(f) the result of
substituting ¢ for x in p€J,. We shall show that if VE, p¢J, and p(ts) is
normal then ) :
(25) P(wk(t)) (0k(s))< 0k( p(t)s)-

The proof of (25) is analogous to that of (23). Suppose r#E, fix ¢ and denote wk(f)
shortly by ¢. Then consider the greatest element 8¢, such that 8<o and for all
peT, and t,s¢T

(26) p(t)s is normal = p(e) (9k(s))< wk( p(£)s).

That element 9 exists by I1, 12 and 13 in 2. To prove (25) it is enough to show that
for all p¢J, and £,s¢T .

(27) p(f)s is normal = p(g) (QI(s))< ok( p(f)s),
since then by Q(8)=Q(w)=o it follows that Q(9)=9 whence ®<8 and then by (26)

we have (25). To prove (27) let ¥=p(p) (9)k(s)), where p¢d,, assume the hypo-
thesis in (27) and consider the cases for s:

1. s¢7, Thenas in the proof of (23) Q(9)k(s)<s and Y<p(e)s=p(wk(t))s. But
p(t) is normal since p(f)s is such. Then applying (23) several times (or by induction

on m where p=(fy...(fma1%)...)) we have p(wk(f))<ok(p(f)) whence by (19.2)
W 5 0k( p(t))s = ok( p(£)s)*) ( pE)s)° = ok( p(t)s).
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2. s¢ o and s°¢of. Then using (19.2) and (26) with Ap as p we have

¥'=P(0) (Sk(s)s%) = Ap(p) (9k(s*)Js* < wk(Ap(£)s*)s°= wk(( p(t)s)*) ( p(A)S)° = wk( p(t)s)
3. 5= (8, 5;). Then (p(£)s)* = (E,p(t)so, E p(£)s)), (p(t)s)®=E and by the help
of (26), (193) and (19.2) we have

¥ =1(0) (S(so), 9k(51)=(EoP(9) (S(s.)), Eip(9) (8k(s,))E
= (0k(Eop(t)so). ok(E,p(t)s)))E=ok((Ep(D)se E\p(t)s))E = ok p(t)s).

4. °=x. Then ¥=p(o)(Sk(s*r))= p((p) (Sk((s"‘r)”)) and as in the proof of (23)
we see that p(f)(s*r)¥ is normal. Thence by (26)

¥ = k(p(t) (s*r)¥)=ok(p(t) (s*1)).
But if s=x then
(p(8) (s*n)N=(p(&) (Ir))V=(p(O))N =((p()s)*1 )V,
and if s=x then again
(p(t) (s* )N =(Ap(t)s*r)¥ = ((p(t)S)*f)”

whence by (19.4) \P>wk((p(t)s)‘r) ok( p(t)s.
Thus the proof of (25) is finished. Applying (25) with x as p we see that if
r¥=+E and £s is normal then

(28) ok(t) (0k(s))< ok(ts).
Then for y=wk(x)we may easily prove that
(29) PN +E & t is normal =%(x)< wk(t).

The proof is by induction on £ (i. e. by an induction corresponding to the inductive
definition of ‘term) for #=x (29) is trivial; for £¢% it is obvious from (20); and
the inductive step is immediate by (28) and (19 3). By (I11) and (29) with ¥ as tit

follows that if rV+FE then r(x)=rMx)=ok(r¥). But if r¥=F then by (20) )
=rN(y) = E = ok(E) = wk(r¥). Therefore according to (KO) and (19. 4)

7 (1)< ok(r)= ok(I)=0k((x)*r) = ok(x)=1,

i. e. x is a solution of 7(§)§§.
Now let '€ #, and r(x’)<7y’. Then we shall show that

(30) ok(H)sHx)
for all normal £. Define n as the greatest element of #, such that
(31) nk(t)<Z(x)

for all normal £ That definition is possible by I2 and I3 (2). It is enough to show
that for every normal ¢

(32) Qk()=E(x')

since then Q(n)=n, o=n and by (31) it follows (30). To do that suppose ¢ is normal
and consider the cases for £:

1. t=1. Then by (18.1) Q(n)k(t)=1=E(x").
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2. t+17 and £2¢ of. Then using (18.2), (31), (15), (16) and (11)

Q(n)(t) = k(PN <TH (X )P = £2() =2 (X') :

3. 9=(ty, t,). Then by (18.3) and (31)

Qn)k(2)= (nk(te), ne(E))=(E0) HX)=HY)-
4, °=x. Then using (18.4), (31), (11), r(x)<y’, and (15) we have
Q()A(£)=nk(t*r)=nk((*1}")=(E*r)M1')
=FIr ST =FrE) =t ).

Thus (39) is proved and thence we have x=mk(x)§§(x')=x’, i. e.yis the least
solution of A(§)<¢& in #,. Theorem 1 is proved.

Theorem 1 may be used as a fundamental instrument in the exposition of a re-
cursion theory in B-combinatory algebras, which is similar to the theories of D. Skor-
dev [6) and L. Ivanov [3]. By suitable application of theorem 1 we may obtain
a first recursion theorem, a parametrization and second recursion theorem, a normal
form theorem for recursive operators and other corollaries. We are intended to do
that in another paper.

Acknowledgements are due to D. G. Skordev who read the paper very carefully
and helped to correct some errors, especially one in the proof of (20).
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