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ON THE MORSE-SMALE INDEX THEOREM
AND THE PROBLEM OF MINIMAL SURFACES

THEMISTOCLES M. RASSIAS

The Morse-Smale index and nullity of some of the classical minimal surfaces are studied.

1. Let T be a Jordan curve in the ordinary Euclidean space R® represented by a
continuous, one-to-one mapping a: 003 — R?, where D?={(u, v)¢R?: u*+v*<r% and
0D? is the topological boundary of DA A minimal surface ¢: D*— R® spanned by T
is a map of class ‘

CD%, RN CYD% RY)
satisfying the differential equations: Ag=0, | dg/du *=|dg/dv [}, dg/du-d¢/dv=0 in Dj,
where ¢ maps dD? onto T in a topological manner. For a surface in isometric repre-

sentation, the Dirichlet integral equals twice the surface area. The Dirichlet integral
is defined as

0 il
D[‘]]= ff2|vq*2 dudv, Vq:(—o—Z—, .a:_’)
D

r

The second variation (derivative) of the area function for a variation whose de
formation vector field is given by g=fN is then :

g, g)=[ sz f(—Af+2KWf) dudv,

where f: D¥—R is a smooth function such that f=0 on 0D and N is the unit
normal field along ¢(D?). K is the Gaussian curvature of the minimal surface, W is

the discriminant of the first fundamental form and A is the Laplacian of the surface
The operator L=—A+2KW, used to define the second variation of the area
function is a symmetric differential operator. This operator is also strongly elliptic.
The operator L is known as the Jacobi operator for the minimal surface ¢: D] R’
(given in a conformal parametric representation). L can be diagonalized with eigen-
values A <Ayg<hy< - —+ o, where each eigenspace V;.‘ is finite dimensional.

The quadratic form //(g, g) is the Hessian form of second derivatives of the area
function at the point ¢. At such a point the Hessian form has two intrinsic invari-

ants that are used to define the nullity and the index of q.
Definition. Let q: D*~R® be a minimal immersion, given in parametric

representation, q(u, v)=(x(4, v), y(4, v), 2(4, v)) where (4, v)¢D? for ré R
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a) The “Morse-Smale Index of ¢” is Kg; D*=the sum of the dimensions of
those V. where V. is an eigenspace corresponding to the negative eigenvalue ) of
the Jacobi operator for q. It is j‘r]equently written as

lg; D)=dim(® Va)
20
b) “The nullity of q” is
: Mg; D)=dimV,,
where V, is the eigenspace corresponding to the zero eigenvalue of the Jacobi ope-

rator L for q (cf. [3], [4] [5], /10])

Definition. A minimal immersion is defined to be “stable” if 1l(g, §>0 for
all (g=0).

A minimal immersion is defined to be “unstable” if 1/(g, 8)<0 for some 2(=0).
A “Jacobi field” on D? is a normal field fN, where f: D?-R has the property

of being a smooth function satisfying the “Jacobi equation” —Af+2K Wf=0.
Remark: Clearly if Mg; D?)=0, then

a) a minimal immersion ¢ is stable <>/(¢; D?)=0;

b) a minimal immersion ¢ is unstable <>/(¢; D?)>0. Consider the eigenvalue
problem:

® {—Af+2KWf= Af where f=f(u, v) on D?

f=0 on 002 (Boudary condition)

Definition. A conjugate boundary of a minimal immersion is a boundary
r=r, such that zero is an eigenvalue of the Jacobi operator for the disc D"’ in the
eigenvalue problem (E). A first conjugate boundary of a minimal immersion is a
boundary r=r such that zero is the first eigerwalae of the Jacobi operator for the
disc D% in the eigenvalue problem (E). i. e. M(r)=0.

The multiplicity of a conjugate boundary r=r, is the number of linearly inde-
pendent Jacobi fields defined on D2 and vanishing on 0D?, i. e. the dimension of

the eigenspace correSponding to the zero eigenvalue of the Jacobi operator for the '
disc D’ in the eigenvalue problem (E).

Theorem 1.1. The multiplicity of a first conjugate boundary of any minimal
immersion q : D2 —R? is always one.

Theorem 1.2. Let q: D2 —R® be a minimal immersion and ry<r,a first con-
Jjugate boundary of q. Then the following are true:

1) Mg; DH=1 it r=r 4) Ilg; DH=0 if r<r,
2) Mg; D)=0 if r<r, 5 lg; D)=1 if r>r,
3) Xg:DH=0 if r=r

Remark. If ¢: D?—R® is a minimal immersion and oD} is a first conjugate
boundary, then q is everywhere stable in the disc DS,
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2. An application of the Morse-Smale Index to the study of minimal sur-
faces in R%. We are going to study some of the main topological and stability proper-
ties of some of the most important examples of complete minimal surfaces in R?; by
making use of the Morse-Smale Index theorem. We consider the eigenvalue formulation
of the Index because this is the best way to get global results for complete minimal sur-
faces and in addition to being in a better situation to examine the eigenvalues of cer-
tain elliptic operators on manifolds. This leads to the study of the eigenvalues of the
Laplacian which play a very significant role in mathematics (cf. [1]).

It is our purpose to analyze the following examples of complete minimal sur-
faces in R?: 1. The Enneper’s minimal surface; 2. The catenoid; 3. The (right) heli-
coid; 4. The Richmond’s minimal surface.

2.1. The Enneper’s minimal surface. A conformal parametric representation of a
portion of the Enneper’s minimal surface in R® is a mapping ¢: D} — R? for each

r,>0, given by g(u, v)=(x(u, v), y(a, v), z(u, v)), where (4, v)¢D} and

x(u, v)=u+uv? -% u®

M y(u.v):—'a—u"u+%'v3,
2(u, v)=ut—7v2

This way we get a global expression of the Enneper’s minimal surface in RS.
The boundary of the portion of Enneper’s minimal surface as described above is a
mapping a: dD? - R® given in a parametric representation as follows:

L, =a(re, 0)=(x(ry, 0), ¥(ro, O) 2(7, 9)),
where

x(ro, 0)=r, cOS 9—% rd cos 36,

W(rg» 0)= —r, sin 0—-+- 73 sin 36,
2(ry 0)=r3cos20, 0¢[0, 2xn].

It follows from work of J. C. C. Nitsche that the portion of Enneper’s minimal sur-
face given by (1) in the disc D? can also be written (in an equivalent way) as

S ={(x, ¥, 2): x=r°u+rgzt'v’——:l§— rout, y=—rov—rgu*~o+%;gva.
z=riut—1); B—v'sl}.

It can be easily shown that its mean curvature / is zero; for this reason it is
a minimal surface. From the topological point of view the Enneper’s surface is simply
connected. It is properly immersed in R% but this is not an embedding because the
surface has self-intersections.

Theorem 2.1.1. The boundary curve T, for the portion of Enneper's mi-
nimal surface S,, is a Jordan curve for 0<r,<\3. The multiple points of T, appear
for r,>0 and 050,<0,<2r in the following places:

For ry=\3: 0,=0, 0,=x; or 6,=%. 9,-921.
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For ro>\3: r(,=fl:_~—fi_7—= 0<91<l6 and 03=mn—0,
\/T cos? 0, —sin2 0,
or fo=—l—l—‘_- %<91<% and e,=21!—91
= sin? 6; —cos? 01
or ry= l_l*,,, - %<Ol<2—;— and 6,=2n—0,
\[T sin? 0, —cos? 0, 3
or ry= 1 n<e,<_76". and 04— 3n—0;.

J% cos2 0, —sin20;
Theorem 2.1.2. The Morse-Smale Index I(g; D?) of the Enneper’s minimal
surface q: D} —R® is bounded above by the sum of the dimensions of the eigen-

spaces corresponding to those eigenvalues ) of the Bessel equation which are less
than 8r% for all r, in R.

Note: The Bessel equation is an ordinary linear differential equation given by
a2y dy

gy 1A 1 —2)y=0 for all =0, 1, 2 where
et B o B X EL

y=y(p), p¢€[0, =) and
p=rro/A+8 for 0=r=<1 and r, given real number
with 7, [0, ).

Corollary. The Morse-Smale Index I(q; D}) of the Enneper’s minimal sur-
face q: D? — R?® varies as follows:

1) Ag; Df.)=0 for r,=0; 4) lg; DH=4;
2) Ml D=1, 5) Ilg; D?)—ocoas ry—co.
3) Ig; Diy)=s2;

Theorem 2.1.3 The portion of Ennepér's minimal surface q: D} —R® for
each ry>0 given by (1), is an unstable extremal (i. e. a non-relative minimum of
the area functional) for all r, with r<r,<y3 and r =1.681475.
2.2. The Catenoid. We define as catenoid the surface obtained by revolving the
curve y=coshz about the z-axis. This way we get a global expression of the sur-
face. It can be™ easily shown that its mean curvature /1 is zero. It is easy to see that
it is properly embedded in R3, and that it is not an algebraic minimal surface. The ca-
tenoid and Enneper’s minimal surface are the only surfaces whose normal map is one-
to-one (K. Voss).
A conformal parametric representation of a portion of the catenoid in R® is a
mapping ¢: D? — R?, for each r,>0 given by ¢(4, v)=(x(4, v), y(4, v), 2(4, v)) where
(@, v)€D; and
x(u, v)=cosh u cos v,
Y(u, v) =cosk usin v,
2(u, v)=u.

16 Cn. Cepauxa, xu. 3
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Theorem 2.2.1 The Morse-Smale Index I(q; D?) of the catenoid q: D} —R®

is bounded above by the sum of the dimensions of the eigenspaces corresponding
to those eigenvalues ) of the Bessel equation which are less than 2r} for all r,

R.
Corollary. The Morse-Smale Index I(q; D}) of the catenoid q: D! —~R® va-
ries as follows:

1) Ilg; D)=0 for r,=0;  5) Ilg; DH=2;

2)  lg: DH=0; 6) Ig; DH=4;
3) lg:DiH=1; 7y IKg; D)=6;
4 Ig; DY=1; 8) M(g; D?)—co as ry—co.

Theorem 2.2.2. The first conjugate boundary of the catenoid q: D? —~R®
occurs for ry=p®|N2== 1.7, where ) is the first zero of the Bessel equation for
the unit disc.

Note: p{®~2.4048256 (cf. [11])

2.3. The (right) helicoid. A (right) helicoid is the surface generated by a line
which moves along the z-axis in such a way that it remains parallel to the (x,y)-
plane and passes through the points of a circular helix; in other words, the surface
is generated by a line perpendicular to the z-axis under a “screw” motion. A para-
metric representation of a portion of the (right) helicoid in R® is a mapping ¢: Dfo—'R“

for each 7,>0, given by ¢(v, u)=(x(v, u), y(v, u), 2(v, u)) where (v, u)¢ D’ and

x(v, u)=1ucos,
(v, u)=usinv,
2(v, u)=".

This way we obtain a global expression of the surface. It can be easily verified
that its mean curvature F is zero. From the topological viewpoint it is simply con-
nected. The (right) helicoid is properly embedded in R? and it is not an algebraic
minimal surface. Monge and Sophus Lie considered this surface as an important
example for their study on the theory of minimal surfaces. They tried to solve the
classification problem of minimal surfaces, but without success. Their methods are
completely different from ours.

Theorem 2.3.1. The Morse-Smale Index Igq; D}) of the (right) helicoid
q: D —R® is bounded above by the sum of the dimensions of the eigenspaces cor-
responding to those eigenvalues ) of the Bessel equation whick are less than
2r1+7r} for all ry in R.

Corollary. The Morse-Smale Index I(q; D}) of the (right) helicoid q: D} — R?

varies as follows:
DI (CF D?)=0 for r,=0; 4 Ilg; DY=2;
2 Me: D)=0; 5) lg; DY=6;
3) Mlg; Dip)st; 6) I(g; D?)—co as ry—co.
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24. The H. W. Richmond’s minimal surface. A conformal parametric represen-
tation of a portion of the H. W. Richmond’s minimal surface in R® is a mapping
g: D} —R® for each r,>0, given by g(u, v)=(x(z, v), (4, v). 2(u, v)), where
(u, v)'EDfo and

x(u, v)= —;— w—uv?+uf(u+v°)

y(d, )= La v —w2v—v/(12+1?)
2(u, v)=2u.

This way we get a global expression of Richmond’s surface. It can be shown that its
mean curvature is zero. Richmond’s minimal surface is an immersion everywhere ex-
cept at the origin (0, 0).

This surface was invented by H. W. Richmond in 1904.

Theorem 2.4.1. The nullity of Richmond's minimal surface (in the sense of
the eigenvalue problem (E)) is zero.

Theorem 2.4.2. /) The negative eigenvalues of :

PR+ R +0 X R (12— 32)R where R=R(r), r€[0, r,)

(A)
R(ry)=0 (Boundary condition) and R¢C} [0, ro
corresponding to Richmond's minimal surface oceur only for n=0, 1, 2, 3,4, 5.
Note: Cf, stands for the space of piecewise C? functions.

Il) No negative eigenvalues occur in (A) if
i) A<—32r2 and n=0; iv) A< —23r2 and n=3;
ii) A<-3172 and n=1, V) A< —1672 and n=4;
iii) AL—28r and n=2; vi) AL —Tr: and n=5.

Research Problem: ([7]). Find the sum (or an upper bound of the sum)
of the dimensions of the eigenspaces corresponding to the negative eigenvalues of
the eigenvalue problem (A), as a function of r,.

In the following we pose some research problems whose solution we hope to
help towards a further understanding of the theory of minimal surfaces and the pro-
blem of Plateau.

Problem: Does there exist a harmonic homeomorphism of the open unit ball B
in R? onto R*?, i. e. do there exist harmonic functions f,, fy, f; defined in B={z=(2,, 24, 2;)
: |zR|a<l}. such that the mapping z-—(f), fs f;) is a homeomorphism of B onto all
of R%? !

Remark: It is a theorem of T. Rado that there exists no harmonic homeomor-
phism of the open unit disc in R? onto R2.

Problem: Does there exist a harmonic mapping ¢: D — R® such that %}g—

=%%- %Z , gg..gj;=o and ¢lop: 0D —T is not a homeomorphism but it is homo-

topic to a homeomorphism? Here I' stands for a C' Jordan curve in R® and D for
the open unit disc in R% i. e. D={(u, v)ER*: W+v2<1}.
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Problem: ([6]). Give an example of a Jordan curve I' in R?® spanning five dif-
ferent minimal surfaces of the type of the disc, all of which are explicitly known.
Is there any characterization of this phenomenon in the sense of Morse theory on
Hilbert (or Banach) manifolds as developed by R. Palais and S.Smale (cf. [2, 8, 9]).
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