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MICROLOCAL ANALYTIC AND GEVREY SINGULARITIES FOR SECOND ORDER
BOUNDARY VALUE PROBLEMS

TODOR GRAMCHEV

Transversal reflection of singularities and microlocal analytic and Gevrey (non) regularity near hyper-
bolic and elliptic points for certain second order boundary value problems are obtained.

1. Introduction. The microlocal analytic and Gevrey singularities of the solutions
of second order boundary value problems are studied in this paper. Asymptotic so-
lutions in the space of the formal analytic symbols are constructed, thus allowing as in
the C= case the use of microlocal parametrices for the examination of boundary value
problems. An existence result with a priori estimates for the .G° approximative solution
is also proposed. Some of the assertions in the paper were stated in [16]..

Let us remind that if X<R" is an open domain we denote by G°(X), =1 the
class of the Gevrey functions of order o, i e. fix) ¢ G(X)<>f(x) € C=(X)and for every
compact K=< X, there exists positive constant C, satisfying

(L.1) 08 flx) =Cll+)(al) x¢ K
a=(ay,..., a,)€Z% al=q,!...q,!

In particular G'(X)=A(X) is the space of all real analytic functions on X. We
point out that for o>1 G°(X) contains non-zero compactly supported functions (i. e.
Gy(X)=G(X) N Cx(X)+{0}) while Gi(X)={0} [10, 12].

The Gevrey pseudodifferential operators were initially studied by L.Boutet de
Monvel and P. Kree[3], later L. Hormander set out the basic notions of the G°-
microlocal analysis [10]. The analytic case was considered in [2.18,19] and recently
J. Sjostrand investigated the analytic singularities of second order boundary value procb-
lems near diffractive points [20, 21]. The stationary phase method in the classes of
Ge-symbols, o>1 was examined by the author [7, 8] using the relation G§=-{0}. It en-
ables us to proceed similarly to the C* microlocal analysis, when o> 1.

Let us recall the definitions of the Gevrey wave front sets WF, ou, c=1 [10]. |

Suppose that o>1 and p°=(x?, £%) € T*A\0, u ¢ 2'(X). We say that p* does not
belong to the G° wave front set of the distribution u and write p®¢ WFgou if there
exist @(x) € G(X) @(x°)F0, open cone T3 & in R¥\0 and positive constant C such
that . ‘ :

| @4(&) |SCM* (NP BN EeTn{k|=1}

(12) N=0, 1,... &)= fet*o(x)dx.

"3

In the analytic case o=1 the lack of non-zero compactly supported functions
prompted the use of special sequences in G [I, 10]. More precisely for any two open
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266 T. GRAMCHEV

bounded sets U, U,, UOCU; one can find sequence hy(x) ¢ C3(U)).ky, = 1N=0, 1,
... and positive number C with the property

| 0%k p(x) |<ClIN'®! |o|<N xR

(1.3) N=0,1,... a¢Zs,

Let now uz ¢ 2'(X) and p°=(x° &%¢ 7*X\ 0. The point p® is not in the analytic
wave front set of u, WF.u=WFg, u if there exist two open nighbourhoods of x°, U,
U,, UycU,, open cone T ) &° in R¥\0 sequence &y(x), N=0, 1,...as above and con-
stant C>0 verifying

gt (8) | SCN# NI [EVE € TN {E/=1)
(149) N=0, 1,.

Equivalent definitions of WFsu could be found in [2, 20]. For simplicity’s sake
we will write further WF,uz instead of WFgou, o> 1.

The main results on second order boundary value problems are stated in 2, while
3 deals with Cauchy problems in the space of the formal analytic symbols (f. a. s. -s)
and the consequent construction of asymptotic solutions in the hyperbolic and elliptic
regions. The proofs of the assertions in 2 are situated in 4. Theorem 2.3 was obtain-
ed in cooperation with P. Popivanov. During the work on this subject the author had
very useful communications with J. Sjostrand.

2. Statements of the main results. Let M be real-analytic manifold of dimension
n+1, n=3 with boundary dM and let P(x, D) be a second order differential opera-
tor with analytic coefficients and with real principal symbol p satisfying the condition

(2.1) dinee P(P)FE0  p € Z,=p~1(0) N(T*M\0)
(2.2) x,40.

The boundary dM is supposed non-characteristic for P, i. e. p(p)=+0, yp ¢ N*aM\ 0,
where N¥oOM=keri*Cc T*M\ Ojon, i:0M—M is the natural inclusion. Without loss of
generality we assume
(23) p(p)>0 yp € N*OM\0.

If the opposite sign holds, one studies —p instead of p.

Consider the analytic boundary operator in the form

(2.4) k(m)d,+£ m ¢ oM,

where 0, is the natural unit normal vector field [17], & stands for first order analytic
differential operator on dM and k¢ A(OM) k= 0. We require that k(m)=0, m ¢ oM
>2, | 0(Z, — the principal symbol of £). If k(m) 3 0, ym ¢ M, we regard ks=sl,

Let m¢oM. In view of (2.3) one can introduce local coordinates x=(x’, x,),
x(m)=0, x’=(Xy, ..., Xp,) in a neighbourhood % ) m such that

(2.5) MNBx{(x', x,):05x,<8, |x'|<8,), 8, §>0
(2.6) o(x, §)=8%+r(x, &)

In these variables d,=d, . Let us recall the division of 7*9M\0 into three se-
parate classes: H={p ¢ T*aIM\0: & '(p) Z, consists of two points}, G={p¢ T*IM\0;
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#~'(p) N, contains one point}, E={p ¢ T*IM\0; #* '(p) N L,= @} called respectively
the set of hyperbolic, glancing and elliptic points. In the coordinates (2.5, 2.6) H, E, G
are given respectively by the inequalities ry(x’, £)<0, ry(x’, £')>0, ryx’, £)=0,
rO:r“x =0

Consider the Hamiltonian vector field H, of p. Its integral curves y(¢, p)= T*M\0,
p€Z, are called zero bicharacteristics of P and if p ¢  one has 2PNz, ={p*p )

o o

Y(¢ pt)= M for +¢>0, M=M\OM. Put yi(t)=y(¢, p*), p € H.

We shall study the next boundary value problem

P(x, Dyu=f¢ Go(M) o=1

(2.7) Bul,\ = g € €'(OM).

Here B is either (2.4) or B=1 ((i. e. Dirichlet boundary condition)

Definition 2.1. The boundary value problem (2.7) verifies Agnon’s condition at
the point p¢ T,0M\0 it B=1 or
(2.8) k¥m) *(p) (p)+ (£ (p))*+0

in the case B given by (2.4).

The first result of the paper is analogue in G° o>1 to the well-known theorems
for transversal reflection of singularities in C= category (by Lax and Nirenberg
[15]) and in analytic category (by Shapira [19]).

Theorem 2.1 Let o> 1, the distribution u 69’(;‘,’0 satisfy (2.7) and p° ¢ H\ WFog.
Suppose in addition that y(t) ¢ WFeu, t<0 (Y4(t)}¢WFou, t>0). Then we get Y(f)
¢ WFou, t>0 (v, (8)¢.WFou, t<0 and '

(2.9) p° € WFs(0lulsp) j=0, 1,...

oroviding Agmon’s condition is valid at p°.
Next we shall study the analytic singularities (2.7) (c=1).

Definition 2.2. (Sjostrand). Assume that the distribution u(Q'(i{) satisfies Pu
¢ A(M). Then its wave front up to the boundary WF,, u is defined as follows

(2.10) W Fygtt = WF () U WFo(uy0) U WF,(0.1),,) = BM.
Here BM~T‘/&7\0U T*oM\ 0 is the well-known homogeneous topological ce
and the microlocal Holmgren theorem shows that WF, u is closed conic set in BM [20].
Denote by V,=T*9M\0 the closed set, consisting of all points violating Agmon’s

condition for (2.7). As usually {f, g} stands for the Poisson bracket.
Theorem 22 [n the case k=1 one has

i) if the point p° € VN Hs, (m€0oM) is such that
(2.11) © {Im 2y, #*p} (p°)+2ReZ\(p°) {In¥y, Re Z}(p°) _
one can find open neighbourhood W=M of m and u,¢ @' (W (M) satisfying

P(x, D)uy € A(W)
(2.12) PO € WFyala \WF(Bito| 50
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\

and either o (t)¢ WFalg t >0, Y5(t)¢ WFyito, t <0 or v}(t)¢ WFu, t<0, 75(f)
¢ WF, u, t<O0.
ii) for any point p°€ V,N E5 having the property

213) {Re 2, i*p} (p))<2m £ {Im %1, Re 1} (p°)

there exist neighbourhood W3ym and u,¢ 2'(W) verifying (2.12).

Remark 2.1. The assertion above is analytic microlocal analogue to Theorem 2
in [17]. The lack of global results is due to the fact that the analytic functions are
not always extendible and G}={0}.

Furher we require k(m)=0 for some m and for simplicity’s sake we assume & real-
valued and Re%,, /m %, in involution, i. e.

(2.14) (Re £, Im £,}==0.

Let k(m)=0, m ¢ M and x be arbitrary tangential analytic vector field near m. Put
N(m, %) to be the miniml integer j such that (x/k) (m)==0. In view of =0, N(m, %)< co.

Theorem 23.Let m¢0Mand k(m)=0. d

iii) if N,=N(m. Im &) is even we claim that assumptions: p® €V ,N H,, u¢D'(M)
solves (2.7), p°¢ WF,(g) and either v},(t)¢ WFu, t>0 or v;(t)¢ WFu, t<0 imply

(2.15) p0 ¢ WF,u.

The relations N, odd, H- NV ,+@ lead to the existence of a point p®¢HZNV,
verifying the conclusions of i) Theorem 2.2.
iv) it Ny3=M m, Re%,) is even we state that for every p°¢ E; NV, (2.15)is va-

lid, providing u ¢ 9’(/14) is a solution to (2. 7), p°¢ WF,(g). The assertion above re

mains true when N, is odd and (Re%,)¥k(m)>0. If Nyis odd and (Re £,)" k(m) < 0
one can find a point p°¢ £V, for which the conclusions of ii) Theorem 2.2 are true.
Let now Q=47 be an open domain with analytic boundary dQ and let

M=R, xQ. The second order differential operator P(x, D) is supposed strictly hyper-
bolic with respect to x, in R"™*! and: .

. f k , g sy n— X.g,---.gn >O

e e G Bl B )
(al' e 49 5,.)( S’l’

where 1, are the two disjoint real roots of the equation with respect to &°:p (x, &

..y E)=0. One demands in addition that no zero bicharacteristic of P hits twice oM.
Under these conditions we have

Theorem 24. Let o>1. Then for every g¢e'(OM), WF.gcH there exists
o
ug € @' (M) approximative solution to the mixed problem

 P(x, Dytg=f(x) € Go(M)
(2.17) Uglom=g+h, h¢GyOM)

u‘{w =0,
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Moreover, for any compactly based conic neighbourhood ' 7*aM\ 0, T H one

can find £¢ R and C>0 with the next property: if (€ Z,, g¢ &' (OIM)N H(OM), WF,g
T there exists u, satisfying (2.17) and

{
@18) | el iy SC*E (=) Yl -

Here ||g|; means the norm in HAOM), M,=M {x,<t}.

3. The construction of asymptotic solutions. Let T—R7X(RZ\ 0) be open com-
pactly based cone. The formal sum X* 5. .(x, 8) is called formal analytic symbol

(f.a.s) of order m in T if p,_,(x, 0) ¢ A(T), ordepp,_r=m—k, k=0, 1,.., and there
is a positive constant C such that

CRY) | 0908 Pm—s(xs B) |[<CrIol+BI+1 1 @l BI [8]™* (x, B)¢T.
a€Zr, PezZ? k=0, 1,... ;

It is well known (3], that (3.1) is equivalent to the fact that p,—,(x, 6), 2=0,1...
are analytic in I‘<:C2~><(Cg\0) complex conic neighbourhood of I' and the inequalities
(3.1) hold for (x, 6)¢I" (with another C>0). Further we will assume I' complex cone.

Denote by S,(m, I') the set of all f.a.s.-s of order m in . We introduce in
Sym, ) norms, similar to those proposed in [3]. More precisely let £,(7T, N={p
=ZI2  Pm—r€Sa(m, T): || p|lr<co}, where
(3.2) ' lpllr= E.a M. (p) T>O0

64 K T2+l +18]
Mipr(P)=(e+ia) T ()T SUP | 9205 Pm—i(x: O)]
[8]=1
and €,\0 is fixed sequence.

The set E,(7, T) is Banach space and evidently the next properties hold : a) T, < T,
=>E,(Ty, T)CE(Ty T)ib) UrsoEn(T, T)=S,(m, I).
Let % be the analytic differential operator

n d
(33) Z= T 1fx 00, + F 8(x, 0)ds,
¥ 8 €AT), ordey;=0, orded; =1, j=1,.., n, i=1,...,d.
We demand that :
n
(3.4) % and IZ 0,00, are linearly independent at every point (x, 0)¢T.
=1
Choose and fix a conic complex analytic hyperplane ScTI' transversal to . It
means that for each (x° 0°)¢S there exists analgtic in conic neighbourhood of (x?, 6°)

function f(x, 0) such that near (x° 0°) S={f=0}, (£f)|—0=0.

If Fis linear continuous operator in E(T, I), T¢(0, T,), Ty, L¢R fixed, we study
the following Cauchy problem

L(E po)+FCE pid=E fra=fCE(T, T)
(3.5) ‘

.Eopl—kls =hz_ob,_,=beE,(T, S).
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Theorem 3.1. Let 2°=(x°, 60)¢S be an arbitrary point. Under the assumption
(3.4) one can find conic neighbourhood T°T of 2° positive number T, with the
oroperty : for every beE(T, S SO=8SNTI° f¢ E(T, I there exists unique p ¢ E(T, I')
solution to (3.5), providing T ¢(0, T;}. Moreover, the linear operator transforming the
data (b, f) into the unique solution p is continuous from E(T, 3°)x E(T, T°) to
E(T, T°).

Proof: In view of (3.4) and the transversality demand on we may think without
loss of generality (after appropriate change of the variables near 2% that in conic
neighbourhood I°)2° we have 2°=(0, 6°), S={x,=0}, £=0,. In these coordinates

the Cauchy problem is written as integral equation in the Banach space E,(T, I'°)

(36) plx, 8)+ [ F(p)x', 1, 8)dt=b(x, 0"+ g" flx', 1, 0)dr.

We used the natural inclusion E(T, S~ E(T, I'%), S°=SNT°. There exist two small
positive numbers 8, 7, such that

37) I [ Fp)x's = Oellr=27[p I wp €ELT, TD)
vT€(0, 7)), My=T°n{|x,|<s}
Indeed, in view of the inequalities
4 . ML, . (p) if §,=0
T -
38) Mg, [ RP)= TML, .y sa(p) if a,=1
one obtains (3.7) taking T, and & small enough. The estimate (3.7) imply that (/d— F)™!

is continuous which proves Theorem 3.1.
Suppose now I'=XxQ, where X=C? is open domain, Q=C\0 is open cone

and let p(x, D)=ZX2 Pm-a(x, D) be a formal analytic p. d. o. in I' (i. e. p(x, §
€ S,(0, I). Consider the cone F=C2X(C{\0) verifying the inclusion {x¢C"; 30 ¢C\0

(x, 0)¢Flc X. . o
Let @(x, 0) be analytic function in F, orde =1 and

(3.9) 0. (x, 0)€Q (x, 0)EF.
If we put @,(x, 2, 0)=—0(x, 0)+0(z, 0)+(z—x).(x, 6) then, according to [10],
(3.10) D (eloxa®) |, .= I C%x,0), ordeCi=j a€Z”

os/s g
and there exists C,>0 such that
(3.11) | d80yCe(x, e)|5c1|-|+m+m—/+n_l%ll‘_p, y1 0

\

o, BEZn, Y624, 0sjs 15, (x, 0)¢F.

Consider the formal action of p(x, D) on e®a, a=X7_ @, €Sl ) We have

(3.12) o(x, D)(* -+ 9 a(- , 0))=elox® E‘ Ay A%, 0),
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where

CUx. 8  pla,_(x. o)
@13) = Amsitn 6)=—v+t+|}v:+s +:=‘/’E+S‘D'_'(x' *) =5 l.’rl g

Osv=—-

We will study the linear operator Ip0(@)=Z% o Ap+—(x, 0) providing p, ¢ fixed.
Further we suppose that
(3.14) §=2"Yn+dy* k=0,1,...

Theorem 3.2. The linear operator I, acts from S,l, F) to S,({+m, F). More-
over, there exist positive numbers T, and C, such that l,q is continuous from
E(T, F) to Eyy (T, F) and its |[Ipe |7 is bounded by Co, VT €(0, Ty}, vi€R.

Proof: Put .
cJ(x, 0)
(3.15) bg)_,(xv 0)= ‘+l5l§\'=’ 0{“}’.—(& 9. 31 »
Osvsr
Clearly orde b("_ ,=m—r—|Y|. Thus one may write
(3.16) Ampics(% 0)= = Lpm (x, 0)D1a,_(x, 6),

strtii=s YT
which resembles the composition of two p. d. o.-s. In view of (3.9) one has

(3.17) a=<|0[ odx, 8)|<cy, (x, 0)€F, ¢}, c3>0.
Taking into account (3.11) and (3.17), we deduce that
(3.18) |02 08 601, (x, 8) | Cr+iri+lal+Bi+ig] B1 y1 |7||0|m—r=iv

a, YEZ"' Bezi) r=0v 1' ... C=C(Q, p, F)>0.
The estimates (3.18) and the relation (3.16) lead to the continuity of /, by re-
peating the arguments in the proof of Lemma 1.2 in [3].
Now we shall construct asymptotic solutions for the boundary value problem (2.7).

Let p°¢ H and p°=(0,&") in the local coordinates (2.5), (2.6). There are two formal
asymptotic solutions near p° in the form

plot(n &) ¥ ax,(x, &)
k=0

(3.19) | xa| <8, (¥, ENET=XXTs,
=l | i 8o il
X={x, |¥'[<8;}, Ts={8€R™\0, ||—§|“ TeoT [< 8}
81’ 8’>0
where the phase function @*(x, §') satisfies the eikonal equation
(3.20) vfnqi\/ —r(x, 9%)=0 JI=1
Q*lx.-o='X'-§'

while a*, k=0, 1,... are solving the transport equations

1 ~ ap +)p* ANEA tnr e
Lrat,+ 181 (/,.z.o %%, s )v,,,,'-f-p i 03z, &1 Px, Dlaz,,,
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(3.21) afkg,,fo:So,,.Soo:l, 8os=0 k>0, k=0
gt 3 +
e 5,0 P00 0500

Using Theorem 3.1 and Theorem 3.2, one easily obtains that £ ja*, are f. a. s-s.
In fact o%(x, &), a%,(x, &) are defined and analytic in Fs={(x, &) € C"+1 x (C™\0)
(x, &')ef, | x,| <8}, I complex conic neighbourhood of T, £ ja*, (x, &) eS,,(O,~I‘;).
If p°=(0, &) ¢ E one constructs asymptotic solution for (2.7) near p° in the form
(322) ot ) E a_y(x, &),
k=0

where (x, &) belong to complex conic neighbourhood FcCit! x (CE\0) of Ty=X
(=38, 8)X Ty, T13EY, o(x, &) is the unique solution of

0., —iVr(x, 9)=0 yI=1
(3.23) ,

(P;xn=0=x ) é’

In particular /m ¢=0 for x,>0, (x’, &) real. The functions a_, are obtained from
the corresponding transport equations and Zioa_,€S, (0, r).

4. Proof of the results, stated in 2. Let o>1and choose x¢ G5 (R"), x(§) =1,
|&|<1. Put a*(x, E)=ZroaXi(x, E)1—x (—,gk)) R>-1. Then a#(x, &) is complete
G° realization of i oai (x, &), i.e. for some C>0

N .
10808 (a*— I _au)(x, &) SCOHP+M ) g1 N1 E)y Y
(4.1) e
EY=(1+8 |7 aeZ}, peZi, N=0, 1,...
and we write briefly a* 2 Zioa*,(3, 7, 8]. Moreover, a* are unique modulo symbol

from the space Ci™={b(x, &) 3C>0: |0%b(x, &)|=C " (a! NI*®)™Y, aeZi,
N¢Z,} and a* verify (with another constant C>0) .

(4.2) 10298 a* (x, &')|=C P (al 1)°E) "
Let A(E)€G°, A(E)=0 for & ¢ ToN{|&| =5} h=1 on T s N{|&'|Z1} 0<B<y
Consider the following F. I. O. *
JEv(x) = [ et ea(x, Eh(EE) d Y
(4.3) veeg(0)={vEe'(Xy): WFsv eI}
ro=XxTs Xo={|x|<8)}.
As in the C= category J* posses th?e properties
(4.4). P(x, D)Jtv¢ G°(X <(—8, 8)):
(4.5) j*"];n-o —v€ G (X):
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(4.6) WFo(Jtv)=y:(WFsv)={v (f). p¢ WF.v}, v€ &, ().

The relation (4.4) follows from (4.1) and the fact that e®*EFoa, is asymptotic solu-
tion of P, while the initial data for a*, lead to (4.5). The inclusion WF(J*v)
—y*(WF,v) is obtained with integration by parts for G° symbols [7, 8, 13] and the
equality (4.6) is deduced from (4.5) and the propagation of G° singularities for diffe.
rential operators of real principal type [10].

Proof of Theorem 2.1: Let the distribution u satisfy (2.7) and let p°=(0, £%)
€ HN\WFo(But om), V() ¢ WFolt, t<0.

Having in mind the considerations in [3, 10], we decompose p(x, D) microlocally
near p°

4.7) P(x, D)=(D, —*~(x, D))o (Dy,—*(x, D)+R
D'=(D,,....D;_)

where A% (x, &0 Zio i, (x, &) Afix, &)=+J—r(x, &); Rw¢G° if WF.w is con-
tained in a conic neighbourhood of {p°*, po—}.

In the case of Dirichlet boundary condition the proof follows the steps of Niren-
berg [15] in tha C= category. More precisely the ellipticity of the p.d. 0. D, —A (x, D")

near y;(f) implies that u verifies microlocally near p®+=(0, 0, £, | — (0, £))
(48) (D,,—W*(x, DG (x,=0)
¢ WFo(ul o)

Applying the microlocal parametrix J* (the construction of e®ty® (at, shows
that it is asymptotic solution of D, —A*(x, D")) we get y}(t) ¢ WFou, t>0, p°¢ WF,
(d,"u I"n=°)‘ One deals similarly with the Dirichlet problem when 7;‘.(t)eWF¢u, t>0

holds.
If B is the first order boundary operator the conclusions of Theorem 2.1 are equiva-

lent with G° hypoellipticity near p® for
(49) b(x', D'Yo=BJ4v]s, 0=g.

The fulfillment of Agmon’s condition at p° means that b*(x, D’) are elliptic at
p® which proves the theorem.

Let o=1. The considerations in the analytic category are rather different from
the C* and G°, o>1 cases, due to Go={0}.

According to [20, 21, 24), we can find functions (denoting them again a*(x, §')
and a(x, &)) analytic realisations of Ti0a*y Iioa_, respectively, i e. there exists
C>0 such that

(4.10) 0:(0*(;\7, g')_-.goa:-t-h (X. gr»lschHNHal NI (&')—N_I;
(4.11) |08 (@%(x, §)— I il ¥N| = C* a1 @)

a¢Zi, N=0,1,...
18 Cn. Cepanxa, xu. 3 .
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Moreover, for some g,>0

(4.12) |05, ax(x, &) |s - e
' 1 et
(4.13) O alx, &)= 4 s

. 1 s
_]=0, 1, o o'y ﬂ—], dgl= T(oR‘&,‘ +lalmpl- )

The variables (x, £') in these inequalities belong to I';.

According to Lemma 1.4, chap. V, [24], if T, T* are open cones inIR*X 0, T T*
there exists M>0 with the following properties: for every >0 there is a function
g:(5") € C=(C"—iR™) verifying

(4.14) 0=g(&)=1 &R

415) ge(C’)={ ; sz R ALY
(4.16) | 8(L) |< MM

(4.17) | O 8(C) | = MeMein| —=i&°D,

Let T=Tsyu T*=TsuN{|& |=1}. Consider the next analytic F. L. O.s
(4.18) JE(x)= [ e etax(x, &) g (&) UE)AE';

(4.19) Jafx)= [ e@xd) ax(x, E)g(ENVAE ) dE, vee'.

The number & will be fixed later.
The operators Ji", J have the properties

(4.20) P(x, D)Jo¢ A(XX(—38, 8);
(4.21) WF(Jo |« =0 —) 1 (XoX Tays) =D
for J=J%, J. and -

(4.22) WF(JE)NY¥(E, p°)=D.

The relation (4.20) is obtained in the same way as (4.4) (taking into account (4.10,
4.11)) while (4.21) is a consequence from the equality Jo |rg=0—0= [ % (1 — ge(8)
&) de (mod A(X)) and 1—gi(8')=0, (§)=0,8"€ Ta [24].

The validity of (4.22) will be established following the ideas in [20, 21] for chang-
ing the integration’s contour. ¥

Consider J'v. Further we will shrink I' and T’ several times without explicitly
mentioning it.

In viéw of (2.1) we may assume that P is strictly hyperbolic with respect to x,
in Ts and after appropriate change in x'-variables we can write ro(x, &' =—8+p(x’,
&), 1>0, 0<e, <& | &< &' €Ts,. So dxoldt|,._o=—2§o>0 and, replacing ¢
with x, as parameter in the zero bicharacteristics of p, we deduce that +dx,/dx,>0
on v¥(x,)p€H. The eikonal equation (3.20) and dg, r,>0 imply
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(423)  of=Xo+X,0(% E): 9y, E)<O @y e m0=—0e V—r(x’, §)>0.

Let x%(x))=m(}(x?) (m, the projection on the base XX(—38, 8)) and let
X € +p%(x®). Such point x exists in view of +dx,/dx,>0 on 75(x%). Evidently (4.23) yield
the existence of positive nimber 4 satisfying
(4.24) 0% (x. 8)—y<—2d ¥€Ts, ¥ €Xo

Because ¢* is analytic function we can find open neighbourhood W of X &
4>0 when x¢ W, open complex cone 7, o7, positive number d,, such that
(425)  Re(o*(x, )= .U)<—d, Xo—yo<—dy, (x, ¥’ §VEWX X XT=0Q
The Cauchy-Riemann equations with respect to £, and (4.25) give
On Im o*(x, &+ing, &' +in")—yo<—d
(x ¥, 0)eQ, U=E'+in" &, n'€R™

Put ¢+(x, ¥, {)=0%(x, {')—y'.{' and denote by C(f), £€[0, 1] the following
contour of integration

(427) R (82)— C(t)={ §g= Eo—iht & 9L, (x, ¥, &).

(4.26)

Here £>0 is small, satisfying {C(£), £€[0, 1]}=T, for (x, ¥, &')€ WX X,X Ts, and
hoet (x, ¥, &)
liol_c‘l’l‘.;'vl_{—“g % (x, ¥, §)eWX X, X Ts,
where M is the constant in (4.16, 4.17).
The inequality (4.26) shows that /mo*(x, §+ing &) n,<0 and in particular
(having in mind the restriction 0<c;<—&,|&' |72 <cy &€ Ts,) one gets

Im(@+(6, ¥, G €)= - (—EMha = theyd*|¥|

(x, V', Go EMEWX X X{C(E), £€[0, 1]}.
Choose now & to be given by <
(4.30) s=min (5, 4 he,d?),

(4.28)

(4.29)

where g, is the constant in (4.12, 4.13).
Then we can write for x¢ W (using Stoke’s formula)

JHo(x)= [f ei 9T (x %l gt | 8d&o, VU y')dy'dE!

X, xC(1)

(4.31) +x.x(o(tf )f P ,e‘ oty bt et [0 at. get at . O glo(y')dy' d §'dn,.

The choice of € (4.30) gives us that the term in the first integral is estimated by
Cexp(—-%—hcld'li' |) while that in the second integralis bounded by C exp ((—&o/2)&'])
i. e. Jro(x) is analytic function in W.



276 T. GRAMCHEV

Remark 4.1. In fact we proved Jtv is analytic in {x, <inf{y,3y"y €suppv}}.
But it will not be applied in this paper.

Proof of Theorem 22 and Theorem 23. Using the parametrices J%,
J. and microlocal Holmgren’s theorem we reduce our investigations to the study of
boundary pseudo-differential equations near p° ‘

(4.32) bx (x', D'v=BJtv lr,=0=¢&
when p°¢ A and
(4.33) b, D'Yo=BJiv|x =g

in the case p°¢E.

The inequality (2.11) ((2.13)) means that the famous (y)-condition for the sub-
elliptic operators is violated for 6% (x’, D’)(b(x’, D')). The results in [22] show bX(x’,
D'Xb(x’, D)) is not analytically hypoelliptic near p® which proves Theorem 2.2, be-
cause 4, could be chosen as u,=J*v,, v, verifying p°¢ WFu,\WFb*(x', D')v, if
(2.11) holds and p°¢ WFu,\ WF,b(x', D'Yv, in the case (2.13) valid. Similarly we
apply the positive results on the analytic subelliptic p. d.o.s [22] for the demonstra-
tion of Theorem 2.3.

Proof of Theorem 24. The assumption that P(x, D) is strictly hyperbolic
with respect to x, allows us to think x, as parameter in the zero bicharacteristics
of P. Thus we put #*(p)NZ,={p*, p~}, p€H and +dx,/dx,>0 on yZ(x,)

Let T is compactly based conic neighbourhood in T*dM\0, TcH. It is enough
to consider the case I'=XX To=T*(0%)\0, where # is a coordinate neighbourhood

of x¢dM, verifying (2.5, 2.6).
Let g¢e'(OM), WF,g<T. In the variables (x’, x,) we write

(4.34) J+g(x)= [ et (=¥ a¥(x, ENA(ENE(E)dE.

Shrinking eventually I', we can assure that the G° singular support of J+g¢2'(#%
is contained in {0=x,<8/3}. Choose PB(x)¢Gg(#) such that supppc{0=x,=<3/2
Xo=inf{y,: 3" ¥ €singsuppog}—e,, 0<e,<1} and P=1 in a neighbourhood %, of
sing suppaJ*g N {xo=to} xo<to<§o+ 8, Put ¢, =sup{xo3x*, (x', 0)€%,}. Evidently W
=PpJ+g becomes distribution on M, after natural extension as 0 in M\ %, and Pw,=F

o
with supp FC ¥, sing supp.F—%. So we can extend F as G° function in R™\ M and,
having in mind the definition of #,, we regard w, as distribution in {x,>¢,} equal to
0 in(MN\R™1)N {x,>4]}.
Let a¢Go(R™1), a=1 in R™+\V,, a=0 in V,, where V,c V, are neighbourhoods

of sing suppaF, Vic{xe>t} N ‘l.', ta>t,
Consider the following Cauchy problem

Pw‘“’:F in xo>ty

(4.35) O |zt = Pt |1t

fodth

Ox, W | mrs™ 95 |y, 2

The results on strictly hyperbolic operators [3, 7] (taking into account (2.16))
yield w‘“’=w, in the strip £3< xo<#;. Hormander's theorem on the propagation of G°
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singularities for differential operators of type (2.1) [10] and the requirement that mo
zero bicharacteristics hits twice dM imply

(4.36) sing suppo@(" N (R™N\ M) N {x,=13}= B.
Therefore the distribution
Il,:{ w(‘l) x°>t3
Wy X, <ly

verifies (2.17).
Let ¢t=£,. Because suppug{x,<ft,}c=# we will estimate the A’ norms in the

local coordinates (2.5, 2.6). Noting that B(x)a+(x, &’) fulfils the inequalities (4.2), we
write again a*(x, &) instead of B(x)a*(x, &’). Then

(437) Diugx)= I (3) J Ok(e")oi ™ a* h(&)a(®) de’
"W oy ,\
(D) E T 0, gotat(x, EMERE)E,

where 0B (ele*(x&7) = glo"(x3ZIBl, 4B (x, E'), ordy d%=j.
Similarly to (3.11) [10] one proves that for some C>0

(438) e, &) |sCo LB 12y (x, &€ suppart
Bz, 0sjsipl

So we have taking into account (4.2)

18]
ID2aglos E X Co-r(( ol gl

< Golt /E’) (a|=NWel gl € =T (P, & Bx))>0

which proves the estimate (2.18) because ||u|?=Xq< || D2 |3 L€Z;.
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