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HOLOMORPHIC SUBMANIFOLDS OF GENERALIZED B-MANIFOLDS
GEORGI DIMITROV DJELEPOV

Let M be a generalized B-manifold, a normal generalized B-manifold, an almost B-manifold or a
B-manifold. It is proved that if M is a holomorphic submanifold of M, then M has the same property.
In the case when M is a holomorphic hypersubmanifold of a generalized B-manifold M some properties

are found. If M and M are almost B-manifolds an identity for the second fundamental form is obtained,
as well as for the second fundamental tensor. In this case some relations among special sectional

curvatures of M and M are found.

1. Let M be a pseudo-Riemannian manifold with a metric g and let M be a sub-
manifold of M. We also use the symbol g for the restriction on M of the metric of
M. Let y and v be the corresponding Levi-Civita connections. Then the Gauss formula
and the Weingarten formula are as follows:

(1.1) ViV =Vey+o(xy), x,yeX(M),

(12) Vb= —Awx+DE X ycEM),
where: o is the second fundamental form, A is the second fundamental tensor, D is
the connection on T(M)!. It is known that

(1.3) 200 9) &) =g N=gx, Ay), X,y €X(M), LET(M):.

We note by &, n vector fields in Z(M)- and by x, y, 2z, w vector fields in Z(M).
If x,y, 2 w are in Z(M), we note this explicitly. According to [1], we have

(1.4) (VeA)e Y=V Ae y— AV, y—Ape Y,
(1.5) (v:0) (3 2)=D,0(y, 2)— (v, ¥, 2)—0( y,V,2).

Let R (resp. R) be the curvature tensor field on M (resp. on M), and R be the
curvature tensor field on 7(M)!, i. e.

(1.6) RY(x,9)5=D:Dy§—DyD.E—Dys, % .

Then the equations of Gauss, Koddaci and Ricci are as follows:

(17) R(x.y,2,)=R(x, 9.2, ®)—g (0 (x, ®),(o(y, 2)) + g (6 (3, w), o(x:2)),
(18) R(x,9)2t =(v,9) (5, 2)—(v,0) (%, 2),

(1.9) R(x, 3,8 m)=RYx., &) —g(Ax, AnJ}x, ).

A 2n-dimensional pseudo-Riemannian manifold M is in the class 9@ of the ge-
neralized B-manifold [3] if M admits an almost complex structure /and a B-metric g, i. e.
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(1.10) PR=—id, g(Jx,Jy)=—g(x,y), x,y€X(M).

If ME%B and the Nijenhuis tensor field N of J vanishes identically, then Mis in
the class #'92 of the normal generalized B-manifolds. If M¢ %% and

(1.11) (V). 2)+ g(Vy))2, X)+8(VN)%, 1) =0, x,y,2€ X(M),

then M is in the class &% of the almost B-manifolds [3]). In fact /9B N oA B =B, where
# is the class of the well-known B-manifolds [6].

2. Let M¢92. A submanifold M of M is holomorphic if Jx ¢ Z(M) for every x ¢ Z(M).
We note that the holomorphic submanifolds of B-manifolds are studied in [7]. Here we
consider some properties of holomorphic (non-isotropic) submanifolds in ¥#. At first
we prove the following assertion.

Lemma 1. Let M be in 9B, 4B, 4B or B. If M is a holomorphic submani-
fold of M, then M has the same property.

Proof. Let M¢9®, M be a holomorphic submanifod of M. If J is the restriction
on M of the almost complex structure of M and x, y¢ZM, then (1.10) is also satisfied

on M. Consequently M¢%®. If M¢ N9, then N=0. Since the restriction N of N on
M is a Nijenhuis tensor field (the proof of this is similar to the proof of the corres-
ponding assertion in the almost Hermitian geometry —see [2]) we have N=0, i. e.

MeNSB. Now let M¢oAB. From (1.1) it follows
2.1 (V) )y = (Vi)Y + o(x, Jy)—Jo(x, y).

Using (1.11) and (2.1), we get g((v./)y.2)+&(v,))z, x)+g((v,.)x,y)=0, i. e. M¢ AB.

Since #=A'9B\ 4B it is clear that if M¢®, then M¢ B. Hence the lemma is proved,
The assertion of the lemma in the case of B-manifolds is proved directly in [7],
Let M be a holomorphic hypersubmanifold of M ¢%#. Then there exists an ortho-

normal J-basis [3] in Z(M)L, i. e. a pair of vector tields &, JE¢ Z(M)L such that

22) & B)=1, g& JE)=0.

Lemma 2. Let M(2n=4) be in 98. If M is a holomorphic hypersubmanifold
of M and {§, J&} is an orthonormal J-basis in Z(M)L, then -

(2.3) Dt=0, DJE=0 for every x¢Z(M).

Proof. Let M¢%®, 2n=>4, {€ JE) be an orthonormal J-basis in Z(M)L, where M
is a hypersubmanifold of M. Then for every x in Z(M) the following relations hold:

(2.9) D8=al+bJ% D JE=—bE+al,

where a, b are smooth functions. From (2.2) we obtain

(25) x8(&, §)=0, xg(&, J§)=0.

Since v is the Levi-Civita connection (1.2) and (2.5) imply, respectively,
(26) 1 &(D.E §)=0, g(D.&, J§)+g(D,JE, §)=0.

Using (2.2), (2.4) and (2.6), we get (2.3). Thus the lemma is proved.
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_ Theorem I Let M¢%®, 2n=4, M be a holomorphic hypersubmanifold of
M. If {€, JE} is an orthonormal J-basis in Z(M)L, then the following assertions are true :

@7) V.iE=—Aex;
(2.8) : RY(x,ym=0;
29) R(x,3,&m)=—g (4 Anx.¥);

(2.10) \ R(x, )zt = g((vA)ey —(VyA)ex, 2)E— g (v A) ey —(vy A)rex, 2)JE .

Proof. Equality (2.7) follows directly from (1.2) and (2.3). Let neZ(M)L, i. e
n=pE+¢JE for some smooth functions p and ¢. By virtue of (1.6) we have RL(x,y)§
=RL(x,y)JE=0 and consequently (2.8) is true. Then from (1.9) we find (2.9). Evidently
o(x,y)=g(o (x, y)E)—g (o(x, y), JE)JE. Using (1.3) in the last identity, we get

(2.11) o(x, y)=8(Aex, y)&— g(A yex ,y)JE -

Taking into account (2.3) and (2.11), we obtain D,o(x,y)=2g(A:x,y)—28(Axx,y)
and consequently

(2.12)  D,o(x,y)=(g(v:-Aex, ¥)+ &(Aex, V. ¥))E—8(v.A X, y) + 8(A £ X, V. )))E.

Using (1.4), (1.5), (1.8) and (2.12), we find (2.10). Hence the theorem is proved.
3. Now we consider holomorphic submanifolds of manifolds in &/#. At first we
prove the following theorem.

Theorem 2. Let M be a holomorphic submanifold of MeAB. Then
3.1) Jo(x,Jy)+Jo(y, Jx)=o(Jx, Jy)—o(x,y),
(3.2) JoA e+ A jroJ =Jo(AgoJ + Jo Ae) .
Proof. Let M be a holomorphic submanifold of M¢ o/#. Then (1.11) is valid where

we put y=Jx¢&(M) and z=E€¢Z(M)L. Using the identily (3] g((v./)y,/y)=0,
z,ye.’l‘(/ﬁ), we get

(3.3) (V)% &)+ &(V 1), x)=0.
Equality (1.2) implies
(34) (Ve )o=—Apx+JAex+ D Je—ID,E .

Taking into account (1.3), (2.1), (3.3) and (3.4), we obtain g (o(x, x), §)—2g(Jo(x, Jx), &)
+g(o(Jx, Jx),&)=0 and therefore

(3.5) 2Jo(x, Jx)=0(Jx, Jx)—0o(x, X) .
Setting x — x+y in (3.5), we find (3.1). From (1.3) and (3.1) we obtain g(JA.x,y)

+ 8(Aetx, y)=g(JAJx,y)—g(Axx,y), which implies (3.2). Thus the theorem is proved.
Let Mc9®, peM. If {x, y} is a basis of a nondegenerate section a in 7, M, then

oL R(x,y, x.y)
(36) K6 9)= g5 g0 - gx 97

is the sectional curvature of a. If a=(x,J/x) is a nondegenerate holomorphic section
in T,M, then the holomorphic sectional curvature h of a is
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R(x Jx. x:dx)
g(x, xP+gx, Jxp

The holomorphic bisectional curvature H of the nondegenerate holomorphic sections
(x,Jx) and (y,Jy) is as follows [4]:

(3.7 h(x)=—

R(x.Jx,y.Jy)
3.8 Hx, = — — = .
e )= = 77w s, S Vet P 8. P
Theorem 3. Let M be a holomorphic submanifold of M¢ o4®B. If pe¢M and
{x, Jx} is an orthonormal J-basis of a nondegenerate holomorphic section a in T, M,
then

(39) )=k~ o(Ux, Jx)+ox, 1) 2,

where k and h are the holomorphic sectional curvatures of o with respect to R and
R correspondingly.
Proof. Let M¢o#B. Then the following identity [5] holds:

(3.10) R(x, Jx, X, J%) = — g (Vo )%, (V) X), X€TM.

If M is a holomorphic submanifold of M, then, according to lemma 1, M¢o/# and
consequently R(x,Jx,x,/x)=—g((v,/)x.(v/)x). By virtue of the above identity, (2.1)
and (3.5), if we put x€ZM in (3.10), we obtain

@B11)  R(x,Jx, %, Jx) = R(x, Jx, %, Jx) + - (0(x, x) +0(Jx, Jx), 6(x, )+ 0(Jx, Jx))

In the case when {x,J/x} is an orthonormal J-basis of a nondegenerate holomorphic
section, (3.7) and (3.11) imply (3.9). Thus the theorem is proved.

Theorem 4. Let M be a holomorphic submanifold of McoAB. If pEM, x, ¢ T,M,
|xll=¢. ||¥][=22 &81=T1, &+1, glx,y)=2g(x, Jy)=g(x,Jx)=g(y,Jy)=0 then

—6H (x, y)— &8l K(x, Jy) + K(Jx, )~ K(x, y)— K(Jx, Jy)]
(3.12) = —6H(x, ) — &89 K(x, Jy) + K(Ux, )~ K(x,y)— K(Jx, Jy)]
+ [l o(Jx, y)—o(x, Jy) |2+ || 6(Jx, Jy) +0(x, ) 2 + g(o(Jx, Jx) + o(x, x), o(Jy, Jy) + (3, ),

where H, K and H, K are the holomorphic bisectional and holomorphic sectional,

curvatures with R and R, respectively. *
Proof. If M¢oAB then the following identity [5] is valid 2R(x, !x.‘y. Jy)

+2R(x, Iy, ¥, Jx)+ R(x, Jy, %, Jy) + RUIx, ¥, J%, y) = —28((V.e) % (V3)9) — 22((Vas ¥, (V50 %)

— (V) (V1) — (T32)%, (V))x): X, ¥ €Z(M).
Let M be a holomorphic submanifold of M. Then using the last identity in a way
similar to the case in theorem 3, we get the identity

QR(x, Jx, 3, Jy) + 2R(x, Iy, 3, Jx) + R(x, Jy, X, Jy) + R(Jx, y, Jx, y)= 2R(x, Jx, y, ]y)
(3.13)  +2R(x,Jy,y,Jx)+ R(x,Jy, X, Jy) + R(Jx, ¥, Jx, y)—2g(o(x, Jx) —Jo(x, x),0( y, Jy)
—Jo( y,y))—&o(x, Jy) +6(Jx, y) = 2/0(x, ), 0(%, Jy) + 0(J%, ) — 2J5(x, Y))-
Making use of (3.1) and (3.5) \in (3.13), we obtain
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2R(x, Jx, , Jy) + 2R(X, Iy, ¥, Jx)+ R(x, Jy, X, Jy) + R(JX,y, JX, y)=2R(x, /%, ¥, Jy)
(3.14) +2R(X, I, 3, JX)+ R(x, Jy, X, JY) + RUX, 3, J%, y)+ 5 &(0(Jx, Jx)

+0(x, X), 06(Jy, Jy)+0( ¥, ) + &(0(Jx, Jy) + (%, y), o(Jx, Jy) + 0(%, y))-
In (3.14) we make the change y — Jy and summing up with (3.14) we find
(3.15) 6R(x, Jx, 3, JY)+ R(%, Jy, %, J)+ R(J%, 3, Jx,9) + R(%, ¥, %, ¥) + R(Jx, ]y, Jx, ]y)
=6R(x, Jx,y,Jy)+R(x, Jy, X, J¥)+ R(Ux, ¥, Jx, y)+ R(x, ¥, x,¥) + R(Jx, Jy, JX, Jy)
+ &(o(Jx, Jx)+o(x, x), 6(Jy, Jy) +( ¥, y)) + &(o(Jx, Jy) + o(x, y), o(JX, Jy) + 6(x, ¥))
+ &(o(Jx, y)—o(x, Jy), o(Jx, y)—o(x, Jy))-

Taking into account (3.6), (3.8), (3.15) and the assumptions of the theorem, we obtain
(3.12). Thus the theorem is proved.
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