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THE SELBERG TRACE FORMULA AND A POISSON FORMULA
FOR THE p-SPECTRUM OF COMPACT HYPERBOLIC SPACE FORMS

REINHARD SCHUSTER

In this paper we derive the Selberg trace formula for the p-spectrum of the Laplace operator of com-
pact hyperbolic space forms and a related Poisson formula. These formulas state a connection between
the eigenvalue spectrum of p-forms and the geometric spectrum given by invariants of the closed
geodesic lines and the parallel translation of the tangent space along them. Studying the eigenvalues
of mean value operators based on point pair invariant double differential forms we use the theory of
Euler-Poisson-Darboux equations. We start deriving the trace formula by the Fourier analysis of the
kernels of the mean value operators and the calculation of the trace of the kernel double differential

forms.

1. Introduction. A variety of results on the spectrum of the Laplace operator on
a compact hyperbolic space form and its geometry as well as the relations between
them follow from the Selberg trace formula. For example D. Hejhal [10] extracted
successively more information in the case of two dimensions by adjusting the func-
tions g and & (cf. Theorem B) of the trace formula using a certain “balancing pro-
cess” (cf. [10]). There are a lot of papers treating the two-dimensional case of the
trace formula, some results for the n-dimensional case one can find in [1, 16]. By our
knowledge the trace formula for the p-spectrum has not yet treated explicitely. A. Sel-
berg has shown in his celebrated paper [15] how to proceed in' principle. One usually
starts with a point pair invariant function. Generalizing this approach to the differen-
tial forms, we will use the point pair invariant geodesic double differential forms intro-
duced by P. Giinther [6]. Further on we will see that the mean value operators
can be used to advantage. The theory of Euler-Poisson-Darboux (abbreviated EPD)
equations turns out to be quite useful for us. The Poisson formula will be obtained
by starting from the Fourier analysis of the kernel of the mean value operator used
and then calculating its trace. This Poisson formula, which generalizes a result of
P. Giinther [9], also describes a relation between the spectrum of the Laplace ope-
rator and the geometric invariants. Related results were also given by L. Berand-
Bergery [1] and H. Riggenbach [14]

Let V be a compact hyperbolic space form of dimension n>2, that means a com-
pact Riemannian manifold of constant curvature —1. By the Killing-Hopf theorem there
exists a properly discontinous group G of isometries of the n-dimensional real hyper-
bolic space H,, the elements b¢G have no fixed point with the exception of the iden-
tity map id. V is isometric to H,/G. Let Q be the set of nontrivial free homotopy
classes of V. In every 0¢Q there lies exactly one closed geodesic line. We denote by /(8)
and v(0) its length and multiplicity, respectively. The parallel displacement along the closed
geodesic line induces an isometry of the tangent space in every point of the geode-
sic line with the eigenvalues B,,...,B,—,, 1 with |B,|=1 (i=1,...,n—1). Putting
y,=Re B, we define o(0)=(v(0)) 12} (cosh4(0) — y,)-'2 following (9). Moreover, let
p,(0) be the p-th elementary symmetric function of the B, (i=1,...,n—1) for p=1,
«ooyn=1 and py(0)=1, which are real numbers.

SERDICA Bulgaricae mathematicae publicationes. Vol. 12, 1986, p. 288—299.



THE SELBERG TRACE FORMULA AND A POISSON FORMULA 289

Following G. de Rham [13] we can write the Laplace operator in the form
A=d3+38d using the differential operator 4 and the codifferential operator §=(—1)p#+n+1
»=d* for a p-form and the Hodge dualisation*. In the space of quadratic integrable
p-forms over V (for the definition of the norm and scalar product of p-forms see 2.)
there exists a complete orthonormal system of eigenforms {w?},  of A, we have

Aw?=pfw?. We can suppose the eigenforms ? to be closed (dw?=0) or coclosed
(8@?=0), cf. [2). Then we can state the Poisson formula:
Theorem A: As an equation in D'(R) we have for p=1

%’ cos[p—(p—(n+1)28] *t=yp, cosh| p—(n+1)/2|t+1/2Vol VS,,
+2—(n+l)/702( a I(O)O(O)p’_,(e) { 81(9) + 8_[(0)}
with

}E (=1)-'B, for n odd and for (p<n/2, n even)
=0

(1) v,=
" | & (—1yp B (—1prremra-ma B Vol v for pz(n+2)/2, n even.
=0

B, denotes the /-th Betti number of V, §,, is given by

n=1\. 4 ~N1-mp x'2 (D2 g
(p_l)( 4m)t=m 2 ‘go (g@z—u*)T, for odd n
u+k
2 Sap= (=12
=0 gpye-mp ! U@
(l,_,)( 4m)(2-m (n/2) uilm (ga — 1T, for even n
utk

with the distributions 7, To€ D'(R), (T}, ¢)=2¢(0),
1t t 1 d
(Ty, 9)=—5 | COSh o i 2 (0@ +o(=0)dt, k=|p—(n+1)2].

T’ means that the sum has been taken over those eigenvalues which result from
closed eigenforms. The second product in S, , runs over half numbers (i. e. 1/2, 3/2,
5/2,...). The related trace formula is described by

Theorem B: If h(r) is an analytic function on |Imr|<((n—1)/2)+8 such that
h(r)=h(—r) and |h(r)|SA(1+|r|)-"-% (A, §>0) we have with gu)=(2r)"" [+=
h(r)e=ir= dr

£y W —(o—"H ) =vph i p— ) + Vol Vo (S

+20 —n)/?'f;n[ (0)a(0) pp—1(0)g(L(0)).
Thereby (S, & is given by -
U+ upatryar for odd n
n—1 - 1 wth
(3) (sn-" g)=(’_l)(4")a v [‘(n/Qﬁ VY e (n=1)2
([[ Ilm(r’+u')]rh(r) tanhnrdr  for even n.
u¥h

19 Cn. Cepanxa, xn. 3
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2. Mean value operators for diferential forms. Let r=r(C, n) be the geodesic
distance between the points §, né¢H, P. Gianther [6] has introduced the following

double differential forms: o,=1, 1,=0,

(4) 6,(G, m)=sinhr(¢, mddr (G, M), 1§ ) =dr(, n).drE, n),
o‘pz—;—c,__l//\\ ACp =T K AGCp—1-

d. A,...show that d, A,... refer to the first variable {. Anisometry b of H, indu-
ces a mapping b* for differential forms, see [12, p. 8]. The following property of the
point pair invariance is the main reason to use the geodesic double differential forms:

(5) b*b*(c,(b%, bn))=0,(, ),

b*b*(1,(b%, bm))=1,& M)

Let K(C, t) be the ball, S(G, ¢) the sphere around C¢H, with a radius ¢ dv, do shall
denote the volume and the survey element, respectively. Let (x%,...,x") be a global
coordinate system of H,, later on we will use the Poincaré model. The scalar product

of the differential forms O=0ieni, dx't A --- Adx" and o' =9, ...,.pd)cil A Adx'p is
1

defined by

i

0.,
(6) 0.9 =pl @ ..., 9" P
1 P

We adopt the convention of summing over repeated indices (here from 1 to n). We
are lowering and raising indices by the covariant and contravariant metric tensors g
and g, respectively. The norm then is defined by || ¢||=(¢.9)"%. P. Ginther initiated
the treatment of the spherical mean value operators

M3, o]t §)=(—1).c,.sin h‘“"g“f’ ) o,(5, ). e(n)don,

M, [0l ©)=(—1).co.sin h‘—"ts(J:’)T,(C- n) - ¢(n)don

with ¢,=T(n/2)2 n—"2.
In this paper we will use the double differential form

(7 a,(G, n)=0,(C, n)+cos hr(C, n)t,(C, n):—plT (Ed cos hr (§, )y’ (exterior power)
and the related sperical mean value operator
(8) Mol C)‘—-(—l)’-t‘o-si"h“"fs({n ay(C, M) @(n)don.

One observes that closed and coclosed eigenforms of the Laplace operator are
at the same time eigenforms of the mean value operator M,,,. To make this more
precise, we will introduce a function z(f, A, p) for £=0 as the unique determined
solution of the following initial value problem of the EPD-equation

©) &2 (62 ) +h cotht g 2(t, Ay u)+{u +”—"—"—[—”’-}z(t. A w)=0

20, 2 w=1, g2t A W)lmo=0.
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[t should be noted that

2t h p)= R == ;YV—J(n—zly:fmﬂ ;%1 l—cgs ht )

2 ’
using the Gauss hypergeometric function F. Further on we define
(10) x(t, A, u, p)=2(t, b n+(p+1)Yn—p)—n). ¥(t, & n, p)=2(t * p+p(n+1—p)—n),
g0y =p+2727L (e, A—2,m, p)=— =B sin haty(t, b, w, p) +cos hity(t, A—2, 1, p).

If there is no danger of confusion, we omit the last argument p in x, y and w. By
referring to [7, Satz 2] it is quite easy to establish the following result:
Proposition 1: (i) For Ao=po, do=0 yields M, (o] {)=w(t, n—1, p)o(L).
(if) For Ao =pow, do=0 yields M, o] (¢, {)=x(t, n—1, p)o(E)-
As a consequence of the correspondence principle of EPD theory we have the recur-
sion formula

1) 2(t, 2 1) = (5 Sin 0t g+ cos h)z(t, h+2, ).

One can easily check that the same equation holds for x, y and w instead of z. The
following integral equation will turn out to be quite essential.
Proposition 2: For Ayz=Ah +2=2 we have

2sinh! "¢ ! .
2(t, Ay, p):ml—)J{Q(cos ht—cos hp)}(*—*=22sin h*p . 2(p, Ay, B)dp.
2 2
For sufficiently large A, this is a consequence of the uniqueness of the solution
of the initial value problem (9). For the remaining values of A, we use (l11) and a
partial integration. After a short computation, we see that Proposition 2 also holds
for x, y and w instead of z. Motivated by Propositions 1 and 2 we take for A=n+3

. 3—-A t
(12 Mol = o = | (208 h—cos )} r-2 sin b= M, l@)/p.)d-
2T 2

Combining (12) with (8), we can write M, as an integral over the ball K(,¢):
I‘(l'—:l )sin hd3—*¢

M[o](t, §)= —I_‘(“I%H—;T‘_ K({.t) {2(cos ht—cos hr(g, ﬂ))}(h_"_a)nap(g n)- ¢(n)dvn.
2_.__

)n"?

According to the above propositions, we get
Proposition 3: (i) For Ao=po, do=0 yields M,|o](t, {)=w(t A—2, p)a(k).
(i) For Aw=pw, dw=0 yields M |o|(t, {)=x(t; A—2, p) @ (C).
Let G be a properly discontinuous group of isometries of H,. This shall mean
that for every {¢H, the set of b (for all b¢G) has no accumulation point. Let F be
a fundamental domain, that means first that the sets 6F, b¢G, cover the space H,
and secondly that bF () cF with b, c€G, b+c, has Lebesgue measure 0. We suppose F
to be compact. Without loss of generality we can suppose F to be the closure of an
open, connected domain. We call a differential form ¢ on H, G-automorphic, if 6*¢=¢
is valid for all b¢G. For G-automorphic differential forms ¢ we can rewrite the inte-
gration as an integration over a fundamental domain F:
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(13) Mi[o](2, §)=sinh3-*¢ ff Malt, €, n) . o(n)dvy with
=1
T, ¢, M=—2—— T {2cosht—coshr(E bn))}*-n-32b*a (&, bn).
I( A—n—1 )nn/‘l b(G
— rGbm) <t

The induced mapping b* is to be taken with respect to the second variable of the
double differential forms. Since G was supposed to be properly discontinuous only
a finite number of terms in the above integral kernel would not vanish.
Proposition 4: The kernel double differential form Wu(t, G, m) is symmetric
with respect to § and M: Pt & n)=TJ( n, O).
Proof: Setting Ar(C, bn))={2(cos ht—cos hr(g, bn))}*—"—72 we conclude from (5)

IR bl bm= - Fr67 )b albie .
rim<t rGbm)<t
If b runs through G the same will be true for 6=* and we could continue this equa-
tion by

= E FAeLmBeeln= T R, 600", 5
r(n,68)<t r(n,00) <t

Thus the proof is completed. m

3. Fourier analysis of the kernels of the mean value operators. There is an
one-to-one correspondence between the G-automorphic forms on H, and the differen-
tial forms on V. Using this statement we will do our calculations in H,. The G-auto-
morphic eigenforms of the Laplace operator on H, are related to the eigenforms of
the Laplace operator on V. We will also denote the corresponding G-automorphic
eigenforms on H, to the eigenforms o7 on V by wf. It is not difficult to check that
the kernel double differential form (¢ &, m) is G-automorphic with respect to both
variables ¢ and 7. In view of the mean value formula and the symmetry of (¢, g, m)
it is possible to expand the kernel double form with respect to the complete eigen-
form system {0f}; ¢ N*

(14) Mt &)= & [~ sin nagy(t, &, wg) -+ cos hty (1,1, p2)] . sin b=t Lo )
uf>0
+OT (b, A—2 w)sin b3 o Qo).

u’; =0

The sum ¥’ is taken over eigenvalues of closed eigenforms of A (£ for coclosed
eigenforms, respectively). First one has to understand the equation (14) in L’-sense
over F with respect to m. But for A>2n+2 one gets that (14) is pointwise relevant
with respect to § and n by standard continuity arguments if one uses the well-known
asymptotic behaviour of the eigenforms (see [5]):

L | @nC)[P=0E").

0suf st
This implies by partial summation

(15) | @8 (Q)|[*/(wey =0E"M-*) for p>n/2.
e
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3
(19) gL, 2 i =1, .,

o’ ox/ - (—v"
3, being the Kronecker symbol. To go further, we recall that
(20) coshr(G, m)=1+((x1 =y )+ + (" =y ) (" =) 267"

holds for the geodesic distance r(, n) of the points {=(x", ..., x"), n=(y4, ...,y €H,
It is known (see [14]) that there exists a special Poincaré coordinate system S(b) for
every isometry & of H, in which

n—1

(21) yi=e® T aixt, i=1,...,n—1, yr=elltx"
k=1

is valid forn=(y", ..., y") =0 {=(x% ..., x") with an orthogonal (n—1)-matrix (af)

From this we deduce

n—1
(22) b*(dy')=el® T o (dx*), i=1,...,n—1, b¥(dy")=edx"
k=1

for the corresponding differentials. According to H. Riggenbach [14], the eigenvalues
Bi...,B,, of the free homotopy class O corresponding to the conjugacy class
determined by b ¢ G coincide with those of the matrix (a). For this reason we can express

the weights p, and o in terms of af. We will always use those special Poincaré coordi-
nate systems S(b7*) with respect to 6% Then it is not difficult to check (see [14]) that

(23) Fi={{=(x% .., x"), Isx"<e }

s a fundamental domain of G, Using (23) and the volume element dog=(x")"dx*
.. dx", we get

expl(b,)
(24) [Edog= [ [ E (&) "dxt...dx"ldx"
£y xM=1 (L, ..., =1y ra-l

with
E={2(cos ht—cos hr(g, b,”'C))}‘w}"""’)/2 troray g, o).

Now we shall turn to the calculation of frb7°a,(C, b7°C). From (7), (20) we gét

(25) a,(C M) =y (G, M)+ (6 =) =y ) WP m)+ v, )
with
(26) VAR (SR E % {—8y x,fy,, dxidy’y

R I WL Iy 1 coshr(Gm) 1
+(p—l)l{ sl/xnyn dxtdy’yP—Y 7 T

n’), } A Adxdy,

1 1 _ [ ~ L ong)
@) VPG = — g { S pdR YT e ANXY Adx"dy’.

{ ) thereby denotes the exterior power. If we use the convention of summing over
repeated indices in connection with the Poincaré coordinate systems, we will always
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sum from 1 to n—1 (i, j, &, l=1,...,n—1). lf p—1 or p—2in 1/(p—1)! or 1/(p—2)
are negative we omit the related term. y©®)({, n) consists of those terms in which one
and only one of the two differentials dx”, dy” appears. Applying (17), (19) and (22),
we get trbo y)(C, b7 L)=0. Consequently y®(f,m) is of no further interest for us.

For {=(x% ..., X"), n=06/{=(y',..., ") we have
(28) tr b7 {(xf =y )N/ =y WR(E, 7)) = (X —y N x/—y))A,,
with A;;=trb7*y? (C, b7 C).

(22) and (27) show that A,; does not depend on x!,..., x* . In order to calcu-
late the right hand side of (24) the coordinate transformation

(29) i=xi—yixt, ..., XY, i=1,..., n—1,

will turn out to be quite useful. Indeed, the determinant of this mapping is different
from 0. If that was not the case then the 0 would have been an eigenvalue of the

linear map (29) and consequently (x%,... ,x"")’:e“b’ (@i (bm) (x, ..., X )T would
hold for a corresponding eigenvector (x',..., x"~')7. But this can’t be the case for 67=-0
because of the fact that an orthogonal matrix preserves (x!)2+ ...+ (x"1)2. Let D be
the absolute value of the determinant of the inverse mapping (2%,..., 2" 1) —(x},
.., X"71). If do denotes the survey element of the sphere (z!)2+4 ...+ (2" 1)2=p? in
R"—1 we obtain

. O =y =y )P BON2 (cos ht—cos hr (&, b)) }¢—n=97
(..., xn=h ¢RrA—
Ldxt... dx"“:-;— 1 fl o 2/2/A,/{2(cos ht —cos hr(g, bC))}}-"-372d21. . . dz"
(% <-4, 2=y ¢rr—
Y

1 2

& L s P "(2Acos bt —cos hi(by)— L f 2i2/A do.

n
2"y (4. - (@22 p?

Thereby we have used cos hr(§, 67C) =1+ ((2")*+ -+ - +(2" 1)+ (x"— y")2)/2x"y" = (p?/2x"y")
+cos hi(b7).
Using the well-known equation

2iz/do= f 8 do ,
O, @122 ()24 4 (2122 n—1
we obtain by transforming back to (x,..., x"!)-coordinates
[ P =y X —y D, b))

(..., =1y ¢ pr—

X{2(cos ht—cos hr(g, brE))*-"-32dx! . . . dx"—

= | {2(cos ht—cos hr(g, bTC))}*-m-37 2x7 yn ﬁ

X (cos hr(G, b7C)—cos hi(by) tr (b7)* ShD(G, brG)dx' . . .. dx™.
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Combining this with (25) and (27), we get
(30) jF” Edvy= )p;l {2(cos ht—cos hr(g, b7L)) =372 tr (b7)*{w (&, b7T)

ngn 1 D m
+2x"y" —— (cos hr(g, b7g)—cos hi(b7))3yP(E, b; 0)}dve.
Applying (26), (27), we get by direct calculation

B1) (bYW, b70)+2x"y" - (cos hr(S, b7C)—cos hi(bT))SAYD(G, 670

n—

= (—1Pp,b7) +(— 17 2221 (cos hr(L, bC)—cos hi(b7))pp—(b])
+(—1)?"Y(cos hr(C, b7°5)—2 cos hl(b7))p,—1(b7)-

Thereby we have used fr(b7)*{8,dxidy/}’ =p! p,(b;")e”“"r) (x"?. We are now ready
to start the computation of [r Edv;. This will be done by applying the following
Proposition 6: Let g(t) be a continuous function defined for 1=0. Then
we have
. 172 n—1
l(b;) nI_Tl ﬁ_c_(f?,h,l(,b,r)___ oo ? Zg(cos hi(bT)
v(b]") s=1 cos rl(b]")—y (6T r(%‘_l_)

}7’ g(cos hr(G, b7C))dv; =
1]

X (1+p%))p~2dp

if the integral on the right-hand side exists.

In [9, Proposition 3.1] a similar assertion is stated and the proof can be done
similar to those of [14, 8.4.]. If we use the integrand on the right-hand side of (30)
instead of function g of Proposition 6 in view of (31) we will obtain

2p—n=i+1 w
S= Izll(b;")c(b;"){{2(cosht—coshl(b;"))}“;"’” - 2(';_2) Pr—1(0] )_

m ¢ Z\ (0}
+{2(cos bt —cos hi(by))—9(p,(b") oS bt +p,())}.

If we consider the correspondence between the free homotopy classes of H,/G and the
conjugacy classes of G we can also express this last equation in terms of the free
homotopy classes:

—n—h+1
(32) §= £ UOY(O){2(cos bt —cos hi(0)))*-72 % Prs(0)

+{2(cos ht —cos hi(6))}}~93(p,_,(0) cos ht + Po(0))}.

Now we shall turn to the reverse of the coin, i.e. we will apply the Fourier ana-
lysis of D by taking the trace for {=n and integrating over F. Therefore we use
[rof8). 0 t)dv;=1. If we include the summand for b=id following the same consi-
derations as those done above we will obtain finally
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® e
2
r();;) 2p—n—A+1
2 z 1(8)o(8){{2(cos ht — cos hi(8))}*-27 ”,‘271?2)— Pp1(0)
=" 2
2
+{2(cos ht—cos hi(8))}*~47 (p,—,(8) cos ht + P»(0))}
= X [— —":—% sin h%y(¢, A, p?, p)+cos hty(t, A—2, pf. p)lsinh*=3¢
u>0

+ I x(t,A—2, p?, p)sinh*—3L
wPZO
This equation includes the values A, A—2 and the weights p,. p,—, for the degrees p

and p—1. It would be nice if we could derive an equation which contains only A,
p, and from which we could obtain the original equation. This goal is reached by

(34)  G(p,A)= T sinh*-'#y(t, A, p2, p)=v,sin i* -1 y(4, 2, 0, p)+Z(t X, p)
w’ZO

A+1

T 5

+
r(%)

20-mRro T U0)o(E)ppy(9)2(cos bt —cos hi(8)))2-272

i =n-"2 1 n—1
(35) with u(t, A, p)=n —E (p—l) Vol V
2
R ) et
? 2 T2 B n+l e
a2 2 o\ _ '
x ,fo % r( l—;+l +a) 920(( 3 v)*—k?)}{2(cos ht—1)}

v, is given by (1). For p=1 (34) is known from [9]. Let us suppose that (34) is
proved for a certain value of p. We consider G(p, A—2)cosh t—(A—1—g(A))/(A—1)
X G(p, A). In this way we get (g(p+l. r—2) if we use (33) and

ré-h
(=B, +1y—) (s A—2, 0, p) sin h‘-‘t+r"”;(-%—_l—) (1) vol V{2 (coshe—1yje-n-an

(36) T—(t, A—2,p) cosht+2=I0= gz, 2, p)

= —p,x(¢, A—2, 0, p) sin 3¢+ (4, A —2, p+1).
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Thereby we have to take use of the property of the spectrum of positive eigenvalues
of A which is corresponding to coclosed p-forms coincides with the part of the spec-
trum of positive eigenforms of A which is corresponding to closed (p+1)-forms (Te-
lescopage theorem of Mac Kean-Singer, cf. [2]), and also that x(¢ A, u, p)=y(¢
A, 1, p+1). Thus we obtain

T x(t, A—2,p2, p)sinh 3= T y(t,A—2,p2+!, p+1)sinh*-3¢

uf>0 uf;ol

(36) can be proved straight-forward, but the calculations are nevertheless rather

long. Thereby it is useful to consider the cases k>1/2,k=1/2, k=0 for k=|p—(n+1/2)
separately, In order to prove the Poisson formula, we start with the equation (34) for

L=2n+2 and apply the differential operator ‘% AWM with Azﬁ—:lﬁ 7‘;{ on it. By
using (11) we get

d . r(2n+2
(37) = AM {sin h2r+1 ty(t, 2n+2, p?)} = r((n':)) 2-my(¢, 0, u?)
o r(2n+2) — T o
=W<‘°S\!P{’—(—’?—-—P)”-
It is not difficult to check that we have as distributions in D’(R)
n+1 n—1
—tu ——Uu
(38) A Amsignf2cosht—1)) T =n ' 2T 40T,
with .
(—2m)t=m2 A m=012{o(£)+ @(—E)} [1-0 for m odd
39 (Twmo)= +oo t
(—2m)=m2 [ cosh 5 A™?{e(t)+ ¢(—¢)}dt for m even.
¢ ¢D(R) is a test function. By (2) one can check that
"=l g
1 n—1\ ? _ n = oyn+1
S,,,,=r(%) (,_1) PANCURHES R (- —op—~)T g
Further on we have
(40) & A sign f{2(cos ht—cos hi(8))}; =T(n -+ 1)2"{8,0 +5-10).

Summarizing (37), (38) and (40), we deduce the Poisson formula stated in theorem A
from (34) by applying T':t—/\"').

In order to prove the trace formula we use an even test function g¢ D(R) and
its Fourier transform A(r)= [+= g(u)e~"*du. Then £ is an even function, too. Applying
elementary infegrals we can write (7, g)=2r"" [ h(r)dr, (Ty¢>=n"" [o tath nr h(r)dr.
In view of (2) it is quite easy to establish (3). The fact that the Fourier transform of
cos x is (2r)-48,+6_,)/(2n)~" implies (cos.x -, @) =((8,+5_,)/2, h). If we use theorem A
with respect to a test function- g¢ D(R) we will get theorem B with this premise at
first. By a standard approximation argument (cf. [4, 10]) we complete the proof of
theorem B. - ‘ .- :
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