Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

AUTOMATIC DRAWING OF SYNTAX DIAGRAMS
MARGARITA R. BARNEVA, KAMEN D. KANEV

1. The Problem. Quite many programming languages are described by context-free
grammars. The syntax of such languages is usually expressed in Backus-Naur metalan-
guage [1]. Recently in a number of instances the so-called graph diagrams or syntax-
diagrams are used for visualisation of the most important syntax units [3]. With regard
to this, the problem of automatization of the drawing process arises, mainly for langu-
ages described by context-free grammars, aiming to avoid labour-consuming activity,
making mistakes and to provide common-style drawing. For that purpose it is appro-
priate a microcomputer with graphic capabilities to be used interactively. In this way
syntax editing and error correction becomes easier in the course of the session.

Experimental drawing and some others conviniences are also provided. The method
of syntax description is specifyed in Section 2. In Section 3 a command language is
presented by which the syntax of user language is defined and Automatic Syntax Dia-
grams Drawing System (ASDDS) is controlled. A brief description for an implementa-
tion of the system and some exemplary results are given in Section 4.

2. Syntax representation of programming languages. As the theory of formal
languages states [l, 2], a context-free grammar may be defined as G=(N, T, P, S) where :

— N is a finite set of nonterminal symbols, called also metalinguistic variables (MLV)
or notions;

— T is a finite set of terminal symbols, such that TUN=0;

— P is a finite set of productions or derivation rules of type A —>a or (A::=a),
where A¢ N, and a is a string of terminal and nonterminal symbols, i. e. a¢ (NUT)*
Elements of P are also called metalinguistic formulae.

— S is a special symbol of N, called also starting symbol or axiom. By the rules
p€P are constructed admissible for language L (G) sentences, i. e. language syntax is
defined by set P.

21.Denoting terminal and nonterminal symbols. Most often the ele-
mets of the set N are denoted by elements of set 7, so it is necessary some agree-
ments to be accepted, concerning the representation of terminal symbols and metalin-
guistic variables. In this paper we will denote N and T elements as follows:

a) Elements of T are enclosed in apostrophes. When the apostrophe is element of
T, it is doubled. For example: ’.’, ‘BEGIN’, """, In syntax diagrams the terminal sym-
bols are printed in elliptical blocks.

b) Elements of N are denoted by strings of letters, digits and underscore (—)
sings, begining by letter. For example: File-name, Integer, 2. As an additional symbol
the minus (—) sign may be used, which means that the line continues below. For
example: [denti-fier. In syntax diagrams the nonterminal symbols are printed in rectan-

gular blocks. For example:
l File-name l. Identi-
fier

SERDICA Bulgaricae mathematicae publicationes. Vol. 12, 1986, p. 309314 .

310 M. R. BARNEVA, K, D. KANEV

22. Representation of derivation rules. Each derivation rule p,¢ P has
the following form: n,::=a, where n,¢ N and a is an expression, built up of compo-
nents and operators. Terminal and nonterminal symbols are components. Operators used
in the derivation rules are:

a) Concatenation () and alternation (|) operators.

Strings are formed by concatenations. For example: ALy B. The corresponding graph
diagram has the form:

—~a~{8}-

Two or more equal in rights possibilities are indicated by alternations. For example:
A|B|C. The corresponding graph-diagram is:

The priority of the concatenation is higher, i. e. A B|C means: (4 B) or (C) but
not (A 4B) or (A 4O).

b) Parenthesis by which the order of operations is altered. For example: 4 (B|C)
means A ;B or A, C. This may also be expressed as A(B|C).

c) Square brackets “[” and “J]” denote zero or one occurrence of the enclosed
substring. For example: AL B]C means A _, B, C or A, C. The corresponding graph-
diagram is:

\
—— A —‘-———.—-—-‘—b— C I——o

ey

d) Braces “{” and “}” denote zero or more occurrences of a substring. For exam-
ple A{B} means A or A_yB or A 3B ,B... The corresponding graph-diagram is

“"_‘;’_ t“ﬁ]”" -

The number of components and operators in derivation rules is not restricted.

3. Command language. The command language of ASDDS consists of set of com-
mands which determine all possible actions. Each command has its own mnemonic code
and parameters. The commands are grouped as follows:

3.1. Input commands.

a) DEFINE. By this command a metalinguistic variable is defined. The MLV’s
name is the first parameter. The system checks MLV’s dictionary and if the name is
already defined a message is generated. The user can give up defining current MLV
(in case of error), confirm (when he wants to redefine current MLV) or require the
current definition to be added as a new alternative to previous one The right side of
the derivation rule is entered as a second parameter of the command. The program

AUTOMATIC DRAWING OF SYNTAX DIAGRAMS 311

checks each entered string for syntax errors and if correct, it is included in the dictio-
nary. When errors are detected they are underlined and the user is prompted to re-
enter the string.

b) RDEF. By this command the user can remove the derivation rule for a select-
ed metalinguistic variable. Its name is entered as a parameter of the RDEF command.

32. Syntax diagrams modification commands.

a) SUBSTITUTE. By this command the user can substitute the derivation rule for
a selected metalinguistic variable As first parameter the name of the substituted MLV
is given and as second parameter the name of the MLV in which derivation rule sub-
stitutions are to be made is given. For example let’s have the rules: A::=C[DJ]
and B::=A_,£E. After execution of the command SUBSTITUTE A IN B the second de-
rivation rule will be = B::CCDJE. Generally by command SUBSTITUTE some
components in derivation rules are represented by more detailed drawings.

b) RSUBST. This command restores selected derivation rule to the state before
application of command SUBSTITUTE, i. e. RSUBST has an action opposite to SUBSTITUTE.
In case that a variable is substituted more than once in depth for selected derivation
rule, the restoration of previous state is accomplished by only one execution of the
command RSUBST. For example, let's have the derivation rules: B::=A; ;C and
A::=K|A K. When the command SUBSTITUTE A IN B is executed t wice the rule
for B will be B::=(K|(K|A_K)K)C. RSUBST A IN B produces B:: = A _,C.

33. Commands providing datatransfer to/ffrom externaldevices.

a) SAVE. By this command all derivation rules are stored on external device.
It could be used when the session is to be interrupted and the current state of syntax
description should be preserved.

b) LOAD. This command loads the data preserved by SAVE command. It can
also be used for loading of before-hand prepared text of derivation rules in standard
BNF or EBNF.

c) CSAVE. It is similar to the SAVE command. The only difference is that the
current state of syntax-description is preserved in internal representation. The data
greserved by CSAVE command is compressed and occupies less space on the external

evice.

d) CLOAD. The same as LOAD but the syntax-description processed by CLOAD
could be prepared by CSAVE only. The command CLOAD inputs the data faster
than LOAD.

34. Command providing drawing of syntax diagrams.

a) DRAW. By this command the corresponding to the selected MLV syntax-dia-
gram is drawn. MLV’s name is given as the only parameter of the command. All syn-
tax diagrams are drawn on graphic display. The DRAW command operates in two
ways selected by commands SON and SOFF.

b) SON. Enables substitutions and all already made substitutions are represented
in the drawn syntax-diagrams.

¢) SOFF. Disables substitutions and all substitutions are skipped off during the
drawing process.

3.5. Additional commands.

a) SYN. This command displays all synonyms of a given MLV, which name is a
parameter of the command. When no parameter is entered a full table of synonyms
for all MLVs is printed.

b) LIST. This command displays the syntax of user’s language, entered by that moment.

¢) XREF. This command displays full cross-reference table for currently entered
syntax.

d) HELP. Prints some operating instructions for the user and explanations of com-
mand language syntax.

The results (when using commands in groups 3.5 and 3.6) could be copied on
paper by functions of the operating system.

M. R. BARNEVA, K. D. KANEV

MONITOR

]

|
[COMMAND INTERPRETER |

[

l

constrained-array-definition

arra

index~
constraint

Fig. 3

component-
sutbtype-
indication

SYHTARX TEXT GRAPHIC
ANALYZER SUBSYSTEM SUBSYSTEM
| | | l |
|
LAVGURGE TRANSFER COMPOSITION PLACEMENT LINKING
A REFERENCE To/FRON
TUNTRR cuproRT EXTERNRL OF CRAPHIC Of CRAPHIC OF GRAPHIC
MANTPULATION RENORY ELEMENTS ELEMENTS ELENENTS
Fig. 1
o | switan 2iacrans
oRAY “I WITH SURSTITUTIONS [7]
- — . — SYNTAX DIAGRANS
R — DRAW YITHOUT SUZSTITUTIONS | =
DEF INE v
C: } prrarem— | v CROSS-REFERENCE
SUNTAN TABLE =
l.0ep INYEK'{:’L
eiNTERNAL Lrst USER’S LANGUAGE
\ OF THE SYNTAX N >
EXTERMAL 1 ——
PEVICE cLoap'| f coave -
T HELP HeELe
EXTERNAL INFORMATION
(DEVICE
_(MTY A
AV
Fig. 2

AUTOMATIC DRAWING OF SYNTAX DIAGRAMS 3]3

subtype_deciaration

subtype ldentifier tupe- | T — >
namne | o —
‘ | % range >
suptype- Lu' | | constraint
Ea‘._—j Fﬂ. Floa:.;ﬂg‘
" point-
Lconstraint |
o fixed-
point-
constraint
3 Lndex-—
constraint
iscriminant~ p
constraint
Fig. 4
array-type-definition
arr (type- range)—+>) component-
mark subtype-
LC indication |
arra { discrete- (I)—a{cF) component-
subtype- subtupe-
indication indication
range

L4

Fig. 5

4. Implementation. The described system is experimentally implemented by prog-
ram modules written for the HP 2647A — Intelligent Graphics Terminal. The terminal
is used in the local operating mode. All program modules are written in BASIC.In the
graphic modules some commands of the graphic extension AGL are used.

The structure of ASDDS is presented in Fig.l. The MONITOR carryes out a dia-
logue with the user. It is arranged in such a way, that the user is continuously direct-
ed by help messages. He is also asked some additional questions when neccessary
(e. g missing parameter, illegal name et al.). The SYNTAX ANALYZER performs two
base functions. It checks the syntax of each entered command line and also analyzes
all metalinguistic formulae. The COMMAND INTERPRETER processes error-free com-
mand lines only. In Fig. 2 the functional scheme of the system is shown. The names
olf gommands are printed nearby corresponding arrows, pointing to appropriate function-
al blocks.

The implemented ASDDS is fully portable. The second version of the system is
implemented on DEC-Professional/ Graphic Terminal. The only few changes were
made in modules dealing with graphics.

314 M. R. BARNEVA, K. D. KANEV

In Figs 5,3 and 4 are shown some exemplary syntax diagrams, drawn by described
system.
Using the ASDDS all base syntax diagrams of ADA language [4] were drawn.

REFERENCES

1. U. /. Bpat4ukonr. CHHTAKCHC R3bIKOB mporpammuposanus. M., 1978.

2. H. YupTt. AaropdtMu+CTpykTypH oT aauud=mnporpamu. C., 1980.

3. K. Hencewn, H Bupr [NACKAJIb. PykosoacTBo ans noab3oBaTenst W onucauue sismika. M., 1983.

4. The programming language ADA reference manual. (Lecture Notes in Comp. Sci., Vol. 155), Berlin, 1981.

Centre for mathematics and mechanics Received 8.5.1984
Sofia 1090 P. O. Box 373

