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AN AXIOMATIZATION OF COUNTERS
LIUBOMIR L. IVANOV

The Translation Independence Theorem of [3] establishes that the operation translation in itera-
tive spaces can not be eliminated by making use of the operations multiplication, pairing, iteration and
the constants L, R. This is shown in the present work to be no longer true if constants W, W,, W,
which express axiomatically the availability of an extra counter are allowed. (Some applications of the
latter result to the mathematical theory of programs are dealt with in the forthcomin er [g).
A general method for imbedding given spaces into wider ones which do have the constanls‘\vg‘gl’,, 2

is proposed, too.

1. Preliminaries. We adduce some definitions and auxiliary statements which,
together with some of the lemmas 1.1—1.24 of [1] (called there propositions), will be
needed for the present considerations.

The S-tuple ¥=(#, [, T, L, R) is an iterative operative space (operatory space,
in the referred earlier papers) if (#, o, <) is a partially ordered semigroup with a
unit /, the operation Il: #?— &, pairing, is monotonous and LFR¢F s.t., writing
(9, w) for N(g, ), it is the case that (@, v)x=(9x, ¥x). L(9, v)=9, R(9, v)=vy and
there are operations ( ) [ |: # — #, translation and iteration, s. t.

(£) (oL, (R)=(0),
Ry=wvy, & (oLy, ty)st=>(py<1;
(££) (/, oloD=[o]

(v, pr)st=>[plyst.

The operation A(g, v)=(¢)[(y)] plays an important role, too. :

An element ¢ is recursive in @ & if it can be obtained from L, R and mem-
bers of # by means of the initial operations o, I1, ( ), [ ], while ¢ is a prime recursive
in @, if it can be obtained in the same way, bar ( ).

Write A, B, C respectively for (R, RL), (LR, L) and A(B?, A?). The following two
statements improve lemmas 1.21, 1.22 [l‘.

First Recursion Lemma. Let o=C([(y)]L, (9)R?) and [9, y)=LR[c]. Then (/, o[¢.
vlv)=[9, v] and whenever yx=xx, and (% ¢ tt,)<St, then [, yjrst.

Proof. The equality (/, o[¢, v]v)=[9,vy] is established in lemma 1.21 }l].

Suppose that wx< X, (1 @)=t Making use of lemmas 1.4, 1.13 [1] one gets

(. (WAL 1) = (v (D=0 o [ = (L, OR) [(Xy)) =A%, %)
which implies [(w)]x<A(x, x;) by (££). Therefore,
(x. o(x A(r, x))=(x C(W)] 1, (@) RA(T, 1))=(x CLOIXDN (@XTXX)X)))
= (% C(G (@)D = (6 o= (0 ) =(x, Alx, xy)
by lemmas 1.4, 1.13, 1.19 [1], hence [o]x=(x, A(t, %)) by (££). Therefore, [¢, v)x
SLR(x, A(r, %y))=r1. The proof is completed.
Second Recursion Lemma. Let ¢,=o(yL, xR) and (9, v, %, p)=@,[9,, p). Then
(%) o(v. 2[o, v. % plp)s[o. v. % )
po500, & p(vo, 110,)s1=>(0, V, L plost.
SERDICA Bulgaricae mathematicae publicationes. Vol. 12, 1986, p. 358364,
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Proof. The inequality of (§) (in fact, equality) is established in lemma 1.22 [1]-
As for the implication, the premises imply [9,, pJo=(o, to;) by the First Recursion
Lemma, hence
[ ¥, % plo=oy(o, 10,)=0(Vo, X0 )=T,

which completes the proof.

Notice that (@)=[/, oL, I, R], [o]=[l, I, o. I], A(e, v)=[/, @, 1, y] and (f), (£f)
are particular instances of (§). Conversely, the two Recursion Lemmas ensure that the
more sophisticated iteration is expressible by means of ( ) [ ], while the more general
induction principle (§) follows by (£), (££f).

Lemma 1. (L)C=(DL, (R)C=(DHR.

Proof. The equalities L2C=L?, RC=CA? and RL=LA? imply (L)C=()L by (£)
Similarly, {R)C=(DR. .

Lemma 2. [C, (oL). I, (R)]={o))

Proof. Writing o for [C, (oL), /, (R)], it follows that

CoL), (o) (R)=C({eL), (P)R))=((oL, (PIR))=(®)),

hence o< (o))
On the other hand, RL=L(R) and (¢L? Lo(R))=LC({eL), o(R)=Lc imply (@)L
<Lo by (£), while (R)R=R(R) and

C{oL)R, Ro(R))=RC((oL), o(R))=Ro
imply oR=<Ro by (§). hence
«Q)L' GR)g(LC. RO')=O',

which gives ((p))=oc by (£). Thereby the proof is completed.
: Let p,=A(L, R*. pa=pR and p=[(L% RL% R), I, I, R] (right grouping of bra-
ckets).
Lemma 3. p;p=(L) pap=(R).

Proof. It follows that R?p=pR and
(Lpy (DR)=(L?, (LIR)=(L),
hence p,p=<(L) by (§). Conversely,
Rpip=piR?%=p,pR,
(L2, ppR)=(Lp, Rp:p)=(Lpyp, Rp,p)=psp

give (L)sp,p by (f). Therefore, p,p=(L) and similarly pyp=(R).
Lemma 4. (9)p,=py(®) (P)P2=Pa®).
Follows by the proof of lemma 1.24 [1].
Lemma 5. ()=[(ol% oLRL, R), I. I, R
Proof. Write o for [(¢L% @LRL, R), 1, I, R¥. 1t follows that

: (@)=(9L, (@R)=(oL, OLR, (®R?),
hence o< (9). Conversely,
(oLR, 9LR?, RoR*)=(9LR, (9L, Ro)R?*)=(9LR, oR*)=Ro
implies cR<Ro by (§), hence
(¢L, oR)= (9L, Ro)=o,

which finally gives (¢)=io. The proof is completed.
Lemma 6. (@)p=p{(oL, ®R))-
Proof. It follows that R?*p=pR and

(oLp, @LRp. pl(9L, ORNR)=(oL*, QRL, pi{(oL, 9R)) R)
=(L% RL, pRX(9L. @R))=p{(oL, 9R)),
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hence (p)p=<p((9L, oR)) by lemma 5 and (§). Conversely, (oL, 9R))=((oL, ¢R))R and
(LX(oL, oR)), RL(L, @R)), (9)pR)=(oL?, @RL. (9)pR)
=(pL, LR, (9R?)(L? RL, pR)=(o)p
imply p((oL, 0R))=(@)p by (§). Thereby the proof is completed.

Pull Back Lemma. Whenever ¢ is recursive in &, then it is prime recursive in
{(B), (L), (AN} U(B), where (B)={(y)v¢RB}.

Proof. An easy induction on the construction of ¢ gives by lemmas 1.13, 1.19,
1.24, 1.20 [1] that (p) is prime recursive in {C, P, Q, (L), (R)}U(%#), hence so is ¢
since @ =L(p)[L]. While C is by definition (B)?[(4)?], a more careful analysis of the
definitions of P, Q in lemma 1.24 and the proofs of lemmas 1.22. 1.21 [1] shows that
P, Q are prime recursive in (/)C, (L) R ((A). (Take o=A(L2, A), o,=()o(l),
and show that o,=0c by (§) and the equality A(e, v)=[(¢L, ovL, R), /, I, ¥?] which
is analogous to that of lemma 5. Then Q=[o\(R, L), L, I, R|. However, it can be
proved by making use of (§) that (/)C=G(L, GR) with G=(L))[(R)], while (R))
=((L)) ((A)) follows by lemma 1.13 [1]. The proof is completed.

Modification Lemma. Let X, L,, R\ ¢% and L, X=L, RiX=R. Take (9, y),
=X(op, v) by definition. Then &,=(#, I, I}, L,, R,) is an iterative operative space
and ¢ is (prime) recursive in {L,, Ry, (L, R),}UZ® iff ¢ is (prime) recursive, in
{L, R, (L), R)}U B

Proof. It follows that

(00 Whx=X(9, v)x=X(ex, v1)=(9% ¥X)1»
Lo, v),=L,X(9, v)=L(9, v)=0

and similarly R,(¢, v),=vy, hence &, is an operative space. For all ¢ the elements
@ =[(L, R) oLy, I, R,), [0)=(L, Ru[e(L, R)] exist and meet respectively (£) (by
the Second Recursion Lemma) and (ff). The operations ( ), [ | are in turn expressible
by means of ( ), [ |, since (¢, v)=X,(0, v),, LX,=L, and RX;=R,, where X,=(L,, R,).

Thereby the proof is completed.
2. Translation Elimination. In this section we establish a general translation

elimination theorem which will make it possible to implement translation by an extra
counter. The availability of additional counting facilities is expressed by the constants
W, W,, W, and their axioms given below; semantics will be discussed in the next

section.
Translation Elimination Theorem. Let W, W,, WheF s.t. W\W=L, W,W=R

WAL, R)=W, LW=W/(L? LR) and RW=W(RL, R?). Let
€={ccF/Wo=cW, i=1,2},
assumming that L, R, (L, R), ()¢%. Then whenever # < ¥ and ¢ is recursive in

{W, W,, W,}®, then ¢ is prime recursive in {W, W), W,}U®. (The reverse impli-
cation is immediate.)

Proof. It follows that W(L, R)=(W,L, W,R) and the more general equalities
Wi, v)=(W,0, W),
LW, v)=WI(Le, Ly), RW(9, v)=WI(Re, Rvy) .
hold for i=1, 2 and all ¢, v.

The set € is obviously closed under the operations multiplication and pairing. In
order to show that it is also closed under translation, suppose that o¢¥. Then the
equalities

oLW ;= WL =LW/o),

RW,=W,R, W{(o)R=RW[o), i=1,2
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imply (o)W, =()Wo) by (f) (or lemma 1.12 [1]). Therefore,
Wio)= W) (e)=(DWo)=(c) W,

for i=1, 2 by lemma 1.13 [1], hence (c)¢¥.
Our next aim is to prove that (o) is prime recursive in W, W,;, W, o for all o¢ &.
Making use of lemma 1.7 [l], one gets

(W2l Wy =R[(W3L, WyR)]=R[WAL, R)]=R[W].
Writing p for W(L, R?), it follows that
R?[p]=Rplp]=p(RL, R*)p]=p(R. R*p)).
hence R[p]R=R*p] by lemma 1.6 [1]. Conversely,
p(Z, W, R[pIR)=W(l, RWII, R[pIR))= Wi, W(R, R*pIR))
=W, plp]R)= W1/, R[p]R)
gives R[p]=W/(/, R[p]R) by lemma 1.6 [1], hence
R2[p)=RWII, R[p]R)=WIR, R*[p]R)=p[p]R=R[pIR.
Therefore, R2[p]=R|[p]R.
Making use of the above equalities, one gets for c¢ %
LW,[WyloLp[p)= W;oLplp] = oL W, p[p] = oL3[p] = oL

and
. RW,[WyloLp[p]= W,R[WyloLp[p]= Wy[ Wy WyoLp[p] = W,[WaloL Wyplp]

= W\[WyloLR?p]= W,[W3]oLR[p]R = W[ WyloLp[p]R,
which implies
(@)=(DW,[W3]oLR[p]
by (£).
The multiplier (/) in the last equality can be skipped. Actually, R[W,]=[W,]W; and
(L[Wy), [Wy]Wy)=(/, R{Wa])=[W,] imply (/)[W]<[W,] by (£), while
(4, WD) [Wy])=(L, (DW,[Wy])=(L, (DR)[Wy]= /) [Wy)
gives [W,]<(/)[W,] by (£f); therefore,
. (0)=(I) W, |WyJoLR{p]= W) [W]oLR[p]= W, [W,JoLR [p]
for all o¢®. In particular, (/) is prime recursive in W, W,, W,.
Let us prove now that (W), (W), (W) are prime recursive in W, W,, W,.
The equalities W,L=LW, W,R=RW, give (W)=()W, by (£), and similarly
(W‘)'(DW’-
The equalities
LWL), (RY)= WAL (L), L(R))=WAL?, RL)=WAL, R)L=WL,
RWI(L), (R))=WI(R(L), R(RY)=WL)R, (R)R)=WI(L), (RIR

imply (W)=(HWI(L), (R) by (£).
Suppose that # C € and ¢ is recursive in (W, W,, W,}U®. Then ¢ is prime
fecursive in

@, ={(B), (LY, (AN, (W), (W), (Wy)} U ()

by the Pull Back Lemma. Taking into account that B, (L), (A)¢ ¥, one finally con-
Cludes that all the members of #, are prime recursive in {W, W,, Wy} U®, hence so
Is @. Thereby the proof is completed.
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3. Translation Implementation: Examples. In this section we describe and illus-
trate the idea of translation implementation based on the Translation Elimination
Theorem.

Given a space ¥, we would like to construct a wider space &, so that: (1) & is
imbedded into &, i.e. isomorphic with a subspace &~ of &,; (2) &, has the con-
stants W, W,, W,; (3) All ¢~ in #~ commutate with W, W,; (4) &~ is conserva-
tive in &, in the sense that whenever ¢~ is resursive; in {W, W,, W} #2~, then ¢
is recurisve in #. That would ensure by the Translation Elimination Theorem that ¢
is recursive in & iff ¢~ is prime recursive, in {W, W, W,} U@~ for all p¢ F, B #.

Now we are giong to show how this technique works for particular operative
spaces, leaving the problem of abstract translation implementation to the next section.

Given an object domain M, the standard functional operative space over M con-
sists of partial single-valued functions ¢ : M — — M, while the standard relational space
consists of partial multiple-valued functions ¢: M — 2% (with @(s)t if ¢(s)=(@) also
regarded as relations ¢ < M?. Other interesting spaces consist of fuzzy and proba-
bilistic functions or relations over M. All these are first order spaces, as opposed to
the higher order spaces s.a. &, of [2] which consist of operator-like rather than func-
tion-like elements.

In order to construct an operative space one has to augment at first the domain
M with a splitting scheme, injective functions f,, fo: M— M with disjoint ranges.
This is only possible for infinite domains. For an arbitrary nonempty M that can be
arranged by introducing a counter, i.e. taking the wider set @XM which does have
a natural splitting scheme, e. g. fi=2Ans.(2n, s), fa=Ans.(2n+1, s).

It should be mentioned also that whenever f,, f, is a splitting scheme for M and
N is a nonempty set, then Asx.(f(s), x), Asx.(fy(s), x) is a splitting scheme for
MxN. We say that M and MxN have the same splitting schemes in such a case.

Example 1. (Analogue to example 2 of [5}. chapter 2.) Let M be a set with a
splitting scheme f,, f,. Take & = {¢/9: M—2}, o s v if e v, ov = As.y(9(s)),
(@ W)(fi()=0(s), (9. W) (fs)) = w(s) and (¢, ¥)(s)1 otherwise, /= )s.s, L=f, and
R=f,. Then ¥=(#,/,11, L, R) is an iterative operative space and its operations ¢ ), [ ]
are explicitly characterized as follows:

@ (f3 (SN =13 (f(o(s))

and (9)(s)! otherwise, #¢[p](s) iff there are n€o, 7, ..., r,_1€fy(M) and r,€ (M)
s.t. ro=5, ri1 €0(f5'(r)) for all i<n, and t=f71(r,).

Example 2. (Analogue to example 1 of [5], chapter 2.) The subspace of exam.
ple 1 consisting of all single-valued functions. Translation and iteration are characte
rized as above, with £€[9](s), 74, €0( f7' (7)) replaced by £=[9](s), 74, =9(f7' (7))

Example 3. Example | with M <o substituted for M, using the same splitting
scheme. In other words, an extra counter is added.

Example 4. Example 2 with MX<® substituted for M, preserving the splitting
scheme.

To implement translation in example 2 we shall use the additional counting faci-
lities of example 4; example 1 is likewisely imbedded into example 3 and other first
order spaces are treated in the same manner. So assume from now on that & =(#, /,
M L R) and &, =(#,, [,, 1, L,, R,)) are respectively the spaces of examples 2, 4.

Lemma 7. Attach to each ¢o¢ F the element ¢~ =isn.(¢p(s), n) in F,. Then
S~ (F~ 1, W F L, R) is a subspace of &, isomorphic with &.

Proof. It is immediate that /~=/,, L~=L,, R~¥=R, and ¢~ sy~ iff p<5vy. One
also gets

o~ v~ =Asn .y~ (9~(s, n))=Asn.y~(@(s) n) = Asn.(w(@(s)), n) = Asn.(ew(s), n)=(ov)~

and similarly (@~ v~),=(9, ¥)™. The equalities (9~); =(9)™~ and [9~],=[o]™ follow b{
the explicit characterizations of translation and iteration, which completes the proof.



AN AXIMATIZATION OF COUNTERS 363

Lemma 8 Whenever o¢F, B F and ¢ is recursive in B, then ¢~ is prime
recursive, in {W, W,, Wy B~, where W,=Asn.(s, 2n), Wo=2xisn.(s, 2n+1), Wis,
2n)=(f(s). n) and W(s, 2n+1)=(f(s), n). _

Proof. The elements W, W, W, meet the assumptions of the Translation Eli-
mination Theorem and F~C € (in fact, € =%~). Whenever ¢ is recursive in &, then
0~ is recursive; in #~ by lemma 7, hence ¢~ is prime recursive, in {W, W,;, Wy} U@~
by the Translation Elimination Theorem. The proof is completed.

Lemma 9. Let 8, F,, #/ < F and a y; €¢®B; correspond to each v, ¢ #, so

that my; (s)=n(t), if v\(s, m)=(t, n), and mv; ()1, if w,(s, m)t, where m=LR™.
Then for every ¢,¢#, recursive, in {W, W,, W,}|)®, there is a ¢;¢F recursive in
@B to correspond to ¢, as above. In particular. whenever ¢~ is recursive; in {W,
W,, W,} U ®~, then ¢ is recursive in A.

Proof. Take Li=(L), Ri=(R), W;=A(L, R?), W;=W;R and W' =[(L%, RL* R).
I, 1, R]. Whenever ¢, y; correspond to ¢, v, then take (9,v1)"=0}v}, (@5 V)]
=Cl(o}, v1) (9);=0(9;) G, [9,]] = Clo;C]. (See section 1 for definitions of C, G.)

Suppose that ¢~ is recursive, in {W, W, W} #~. Taking #~°=(®), it follows
that an element ¢~° recursive in (@) corresponds to ¢~, hence ¢ will be recursive in
@ since ¢=Lo~*(/, I). Thereby the proof is completed.

Translation Implementation Theorem (for example 2). Let o¢#, # < #. Then
@ is recursive in @ iff ¢~ is prime recursive, in {W, W,, W,}u®~.

It follows by lemmas 8, 9.

4. Abstract Translation Implementation. Given an arbitrary iterative operative
space ¥ =(#, /, I1, L, R), we construct in this section a corresponding space &, s.t.
conditions (1)—(4) of section 3 are met.

The presentation of the space of example 4 back in the space of example 2
(lemma 9) hints that it may be possible to construct &, from materials provided by
&; in other words, to organize the additional counting facilities within the given
Space ¢.

Following this idea, at first we construct a closely related space &, (if (/)=/ in
¥, then &,=7), then change the pairing scheme I, L, R, of &, by the Modifica-
tion Lemma to get &,. What remains to be seen is that (1)—(3) take place; (4) will
follow by the very construction of &,.

Lemma 10. Take F,={9¢F/Do()=9¢), < and o as in #, = ni#3,
lo=(I), Ly=(DL and Ry=(I)R. Then ¥,=(F,, Io, N, Lo, R,) is an iterative opera-
tive space and (9),=9), [),=[0] (/).

Proof. Straightforward.

Lemma 11. Let X=C, Ly=(L), Ry=(R) and &,=(#,1,, N, L,, R,) be obtain-
ed from ¥, by the Modification Lemma. Then & is isomorphic with the subspace
&~ of &, based on F~=(¥F), attaching ¢~=(9) to ¢.

roof. The elements X, L,, R, are in #, and meet the assumptions of Modi-
fication Lemma by lemma 1, hence &, can actually be constructed.

It is immediate that /~=/,, L"=),, and R~=R,, while o~svy~ iff o<y follows
by @=Lo)(/, I).

Taking into account that (@, v),=C(9, v),

(Oh=[(Lo Rohs Ly, los Ri}o=[C, @ (L), I, (R)), [®]y=(Los RI®(Le» Roh}o=CloC]

for all g¢ &, #,, one gets (QW)™=0~V™, (9, V)~ =(9~, v~), (@)~= (9™, [¢]~=[¢~]
for all ¢ # respectively by lemmas 1.13, 1.19 [1}, 2 and 1.20 [1]. Thereby the prooi
is completed.

Remark. It can be shown that (¢),=G(¢)G, too.
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Lemma 12. The space &, and the elements W,=A(L, R?), Wy=W,R and
W=[(L3 RL?, R) I, I, R] meet the assumptions of the Translation Elimination Theo-
rem and all the members of F~ commutate with W;, W,.

Proof. The elements W, W, W, are in #,, W,W=L, and W,W=R, by
lemma 3, W(L,, R),=W by (§), L,W=WI(L}, L\R)), and R,W=W(R\L, R}) by
lemma 6. All o~ ¢ #~ commutate with W, W, by lemma 4 and so do the elements
Ly, Ry, (Ly, Ry (I,); since they are in #~ by lemma 11. The proof is completed.

Translation Implementation Theorem. Let ¢¢# and # < #. Then ¢ is recur-
sive in # iff ¢~ is prime recursive, in {W, W,, W,}U 2~

Proof. Whenever ¢ is recursive in &, then ¢~ is recursive, in 4~ by lemma 11,
hence prime recursive, in {W, W,, W,}|J@~ by the Translation Elimination Theorem.
The reverse implication follows by the construction of &, and the equality ¢=Lo¢™~
.(1, I). Thereby the proof is completed.
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