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EXTREMAL PROBLEMS FOR CERTAIN NEVANLINNA ANALYTIC FUNCTIONS
MAXWELL O. READE, PAVEL G. TODOROV

This paper deals in detail with the results announced in our paper [1]. We determine sharp bounds
for some basic functionals defined for all analytic functions having the forms f(Z)-f‘_ldu ()/(z—=t¢) and

0 (2)=J" ,zdu (t)/(1 —tz), respectively, u(¢) is a probability measure on [—1,1]}

1. Introduction. Let us consider the class N, of Nevanlinna analytic functions

(1) f@)= (%9 ¢(zl—1s251),

| 2—t’

where pu(f) is a probability measure on [—1,1]. According to a theorem of Thale (see
[2), p. 234-235, Theorem 2.3) the open disc |z|>1 is the maximal domain of univa-
lence of the class N, If in (I) we replace z by 1/z, then we obtain the class N, of
associated functions

1
) tp(z)sf(-'i)u_i‘_l‘t_ﬁ?, z¢{z|zs—1,221)

for which the open disc |z|<1 is the maximal domain of univalence. We have found
the radii of starlikeness and convexity of order alpha of the classes NV, and N, in our
papers [3] and [4]. We have also proved in [3] and [4] that the functions ¢ (2) of the
class N, as well as the functions 2¢’(z) are typically real in the init dise |z|<1.
G. Goluzin [5), Shu Shao-Peh [6] and M. lglemizova [7] have found sharp esti-
mates for the modulus and the arguments of the typically real functions and their de-
rivatives. Note that the extremal functions do not belong to the class N,. For an
arbitrary fixed z, |z|<1, sharp bounds on the functionals

|9(2)|, | 9'(2)|, arg 9(z). arg ¢'(2), Re o(2), |Im o(z)]

over the class N, do exist as well as bounds over the class N,. With the help of
methods due to G’ Goluzin [5] we have already found the sharp upper bounds on
|@(z)|, |9’(2)| and |Im@(z)| and the sharp lower and u;gm bounds on arg o(z) and
arg ¢'(z) [8). Now with the help of ideas due to the M. Remizova [7] we find the
sharp lower and upper bounds on the functionals

|o(2)|, Reo(2), |Imo(2)|, |9'(2)|

obtalnlng again some of our earlier results in (8].
2. Estimates for |9(z)|, arg (2), |Im(2)| and Re@(z). Note that the kernels of

the integral representations (1) and (2), i. e. the functions

@) Rz, Lo =g,

z-t’
play a leading role in this paper.
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Theorem 1. I. For a fixed z, |z|<l, Imz+0, the region A of wvalues of the
functional ¢(z) is the convex hull of the curve w=1(z2,t), —1=t=<1, i. e. A is the
segment of the disc with center at the point —i/21m(1/2) and radius 1/2|Im(1/2)]
Jjoining the points of the circle with coordinates

(4) =i, B=";,0¢4B.

Il. For a fixed z, |z|<]1, Im2=0, the region A of values of the functional ¢(z)
is the rectilinear segment AB of the real axis with endpoints (4).

Proof. The theorem follows from the now classic Asnevic-Ulina theorem for the
region of values of functionals represented by Stieltjes integrals [9].

Theorem 2. For a given z from the disc |z'<1 and for each function ¢¢N,
we have the following inequalities

z Lz . i ; 1
(5) iz sle@)|= i=hflz—3is 3
| 1 .
© HEstsleis T f el g
z
1
@ I Islo@ S| 5 L if 12+ 5 1= 5

where for z+0 the equalities hold true only :
i) for the functions @(z)=l (z, —1) and o(2)=1(z,1) on the left-hand side and the
right-hand side of (5), respectively ;
ii) for the functions
3 1 .
®) o@)=itsFIm, o= ——
z

on the left-hand side and on the right-hand side of (6), respectively ;

iii) for the functions @(z)=l(z,1) and @(z)=l(z, —1) on the left-hand side
and on the right-hand side of (7), respectively.

Proof. Since from (2) we can obtain
(9 0 (2)=0(2),

it follows that it is sufficient only to consider the case Imz=0, |z|<1. For Imz=0,
|z|<l. the assertions (5) and (7) follow from Theorem 1 (II) mentioned above. For
Imz>0, |z|<1, according to the above Theorem 1 (I), the region A belongs to the disc

i 1
10 Wt — | ——.
(10) | zxm_".' 2lm_;.

Hence in this case the assertions (5) and (7) follow from the inequalities
(5) A|S|0(@)|s| Bl for [|z— 5 |5 §1n[Imz>0];

@) | Bl=|o(2)|= Al for ||z+%|s %]n[lmz>0];

and (4). The assertion (6) follows from the inequalities

(6" IC|s|0(2) IS D], for [|z+|= 5] (Im2>0],
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where C is the foot of the perpendicular from the origin to the chord AB, and D is

the point of intersection of the arc AB with the positive imaginary half-axis. In fact,
from (10) it follows that the coordinates of D are

(11 D=——,
Im—
z

i. e. we obtain the second extremal function in (8). The modulus of C is

A I .
(12) |C|=;B—A|[lmm|=I£:ﬁ, if Imz>0.
The coordinates of C are
(13) C=M(z,—1)+(1—=2)U(z,1),
for some A, 0<<A<1, which satisfies the condition
(14) [M(z, —1)+(1—2) Uz 1)|=|C]|
From (12) and (14) we find that

1 1
(15) l=-2—(1+Re7).
Thus from (13) and (15) we obtain

2 1

(16) Comip=zim—,

i. e. we obtain the first extremal function in (8).

This completes the proof ot Theorem 2.

For the functions @¢A, L. Dundudenko (see [10], p. 38. Theorem 2) obtained
the inequalities

(1 sl o@ s iy if 1211,

where for z+0 the equalities are attained only by the functions ¢(z)=z/(1+2) at the
points z= +r, 0<r<I, on the left-hand side and at the points z=Fr, 0<r<I, on
the right-hand side, respectivelg. By comparison with Dunduéenko’s inequalities (17), it
is clear that our inequalities (5)— (7) are sharper.
From the geometric considerations used in the proof of Theorem 2 we obtain
Theorem 3. For a given z+0 from the disc |z|<1, and for each fanction
©¢N,, the inequalities

(18) arg l-‘n Sargo(z)sargTE—'. if Imzz0,
and
(19) arg »f;'_;sargo(z)s"gﬁ-‘- , if Imz50,

hold true, where for \mz+0 the equalities hold only for the functions o(z)=l(z, +1)
respectively.
Theorem 3 was obtained by us in an earlier paper by another method (8].
Theorem 4. For a given z+0 of the disc |z|<1 and for each function PEN,y,

the inequalities
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I I 1
(20) oz sllno@ s {22, for |z—§ |5
|Imz| 1 1, 1 y
1) 1——1+z,-sllm¢<z>ls“m%| » for [|z—| =50 [Re2=0];
(22) s I ‘P(Z)Igu—',—l, for [ z+5|25]N[Rez<0];
m—
z
Im z | I 1
(23) ——|||T:_!i5|lm (p(z)lslll:'.:: , for |z+?|§%,

hold true, where for Imz==0 the equalities hold true only:

i) for the functions §(2)=1(z, —1) and ¢(z)=Il(z,1) on the left-hand side and
on the right-hand side of (20), respectively ;

ii) for the function @(2)=1(z,—1) and the second function in (8) on the left-
hand side and on the right-hand side of (21), respectively; in particular, for Rez=0,
again for the functions ¢(z)=1(z, +-1)at the points z= +ir in the left-hand side of (21);

iii) for the function ©(z)=1(z,1) and the second function in (8) on the left-hand
side and on the right-hand side of (22), respectively ; in particular, for Rez=0, again
for the functions (z)=1(z, +1) at the points z= +iron the left-hand side of (22);

iv) for the functions o(z)=0(z,1) and @(2)=1(z,—1) on the left-hand side and
on the right-hand side of (23), respectively.

Theorem 5. a) For a given z+0 from the half-disc [z||z| <1,lm2=0}, and for
each function ¢¢N, we have the inequalities:

L If |z—(1/2)|<1/2, then

24) Re st 2P <Reo(a=sTTtpl. f lz—f ¢ " IS5
Rez+|z|? 1
(25) —'ﬁ;—;f,—gRe q:(z)smlm%l , for
lz+pgpe Tlzglnllz—ge Tlzglnlla—zlsgl:
(26) R’l‘:)'l’sRe(p(z)s -Silian for

1
2|lm.;l

et e Flzpnliz—fe Tlzginl2—FI= 41

Rez—|z|® Rez+|z[? 1 ~3..1
(27) —[T:TH‘SRCﬂl)STmTr- if |2+J72-¢ ¢ |Sﬁ'
where the equalities hold true only :
i) for the functions @(z)ml(z,—1) and ¢(z)=l (2,1) on the left-hand side and

on the right-hand side of (24), respectively ;
i) for the function ¢(z)=l(z,—1) on the left-hand side of (25) and for the

tion

1 i
(28) ’m-—ﬁl e




394 M. O. READE, P. G. TODOROV

on the right-hand side of (25);

iii) for the function ¢(z)=L(2,1) on the left-hand side of (26) and for the func-
tion (28) on the right-side of (26);

iv) for the functions ¢(2)=I(z, 1) and ¢(z)=Uz, —1) on the left-hand side and
on the right-hand side of (27), respectively.

IL If |2+(1/2)|=1/2, then

Rez—jsp !
(29) |1—2|’ gRe(p(Z)SQImLI , for
z
____lﬁ l% (l, L ___,_:_ T)L )
llz—ge T I=Glnllztze =5
Ll L R 2
(30) 2o l2E Reo ()<t IELAE, for

23

i1 _|_-i% X
[lz—‘h_e I§ﬁln[lz+ﬁe |5J2—]v

R 2
(31) 2—;|——I-$Re (P(Z)é"el’—:fi%%gi—,fbf
LI R L2 L
[z JQ_e ‘:ﬁ]n[|z+ﬁe 'S»/f]'

where the equalities hold true only :

i) for the function ¢(z)=L0(z, 1) on the left-hand side of (29) and for the func-
tion (28) on the right-hand side of (29);

ii) for the functions ¢(z)=l(z,1) and @(2)=!l(z, —1) on the left-hand side and
on the right-hand side of (30), respectively;

iii) for the function

1 —i
32 - e
(32) o(2) \/2_lm.zl_
on the left-hand side of (31) and for the function o2)==l(z, —1) on the right-hand
side of (31).
L If |z+(1/2)|s1/2, then
Rez+4|z|? ,Rez—lx_E R 1,
(33) |l+zT‘_sRe¢(z)= =z for |z+ﬁe ' IS\TQ;'
1
34 <Req(z)sRez—|z1*, for
(349 z—rlm_; *(2) T f

llz—J-';a'leﬁ;]ﬂ[lH%e'le %lﬂlz’—%bv‘zl:

(35) L sRee@s R for
z

Ue—gpe TIzgInlz+ e Tl 2glnl| 2512 3):
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Rez-—‘i]_’ Rez+4|z'2

- 1 i, 1
(36) TT—zp <Reo(@)s— 7 i gz—-ﬁe 4 |§J—2_,

|l+2(’ .

where the equalities hold true only:

i) for the functions o(2)=l(z, —1) and ¢(2)=1(z, 1) on the left-hand side and
on the right-hand side of (33), respectively ;

ii) for the function (32) on the left-hand side of (34) and for the function ¢(z)
=1l(2, 1) on the right-hand side of (34);

iii) for the function (32) on the left-hand side of (35) and for the function
©(2)==1(2, —1) on the right-hand side of (35);

iv) for the functions o(2)=l(z, 1) and @(2)=[(z, —1) on the left-hand side and
on the right-hand side of (36), respectively. _

b). For a given z+0 from the half-disc [|z|<1]N[lmz=<0] and for each func-
tion o(z)€ Ny we obtain some relations which are obtained from those in section
a) by replacing z by z and taking into account that Re ¢(z)=Re ¢(2).

Remark. The curve |22—(1,2)|=1/2 is a Bernoulli lemniscate.

Proof. a). Let z£0 be a fixed point of the half-disc [|z|<1]N[Im2=0]. Accord-
ing to Theorem 1 we have

L if |z—(1/2)|<1/2, then

(241) ReAgRe(p(z)gRe B, where arg BS':_:

(25") Re A<Re ¢(z)=Re E, where argAg%, arng%. Re A<ReB,

where E is the point;
(28" Em——to Lo,

2im— 2Im_
z z

which is realized by the extremal function (28);

(26" Re BsReg(z)sReE, where arg A<, arg Bz, ReBsRe 4;

FNE]

(271 Re B<Re¢(z)<Re A, where arg A=

where the equalities in (24" —27’) hold true only for those functions indicated in
i) —iv) of Theorem 5 (a, I); :
IL if z+(1/2)|=1/2, then

(297 Re BsRe ¢(z)<Re E, where arg As% , arg Bs—":1 s
(30 Re B=Re p(z)=Re A, where arg Az%. arg Bs%’-‘-:
317 Re F<Re ¢(z)sRe A, where argAz-:i. arg Bz%’i;
Where F is the point

@) T



396 M. O. READE, P. G. TODOROV

which is realized by the extremal function (32), where the equalities in (29’ — 31")
hold true only for those functions indicated in i) —iii) of Theorem 5 (a,Il);
L if |z+(1/2)|<1/2, then

(33) Re A<Re ¢(z)<Re B, where arg Agg} H
(34) Re F=Re ¢(z)<Re B, where

arngl;;—a—;i ,arg B= ?4’5, , ReA<ReB;
(35") Re F<Re ¢(z)<Re A, where

arg A< %1. arng%. Re B<Re A;

(36") Re B<Re g(z)<Re A, where arg B=r,
where the equalities in (33’ —36’) hold true only for those function indicated cases
in i)—iv) of Theorem 5 (a. II).

This completes the proof of Theorem 5.
3. Estimates for |¢’(2)| and arg ¢’ (z). From (2) we obtain

, Loant
(37) @ (@)= | {iep OEN
Theorem 6. I. For a fixed z, |z|<1, Im2+0, the region A’ of values of the
functional ¢’ (z) is bounded by the curve
1

(38) ‘W=T|-_—“)7, —lsts1,
and the rectilinear segment

TR - A 1-2 -
where the points A’ and B’ are the points

) 1 ’ 1

(w) A -(l—-{-l_)i and B -(-r_-:;p.

The curve (38) is the arc AB” of the cardiold w=_E§? when § describes the arc
A,B,, 0¢A,B,, of the circle

(1) |6 =ias |= st

where the points A, and B, are the points

(42) Aym ' and By .

1
i+z
The arc A'B’ of the cardioid w=§® does not pass through the origin.

Il. For a fixed z, |z|<1, Imz=0, the region A’ of values of the functional ¢'(z)
is the rectilinear segment A'B’ of the real axis whose ends are the points (40).

Proof. The theorem follows from the classic Adnevic-Ulina theorem on the region
of values of functionals represented by a Sticltjes integral [9).
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Theorem 7. For a given z+0 from the disc |z|<1 and for each function
Q €N, the inequalities

1 , T, 1,1
(43) m§l¢(z)|§m- if |z_515 5
I 1—|z|? 1 1 1
(44) '—'—I“—,-’,i,‘,—_—,%l—’—slw'(z)lslz el g
z
4 1 ¢ 1 1 1
(45) I-l—_—z—lrél(P(z)lSTm . if |Z+?|$ 7

hold true, where the equalities hold true only :

i) for the functinos @(z)=l(z, —1) and ¢(z)==1l(z, 1) on the left-hand side and
on the right-hand side of (43), respectively ;

ii) for the function

1 1+|z]2
(46) ‘P(Z)Ell—:_—z+(l—l)l:—z. where A=3+( 4||:PI)Rez'

on the left-hand side of (44) and for the function o(z)=l(z,¢), t=Re(1/z) on the
right-hand side of (44);

iii) for the functions ¢(z)=1(z,1) and ¢(z)=1(z, —1) on the left-hand side and
on the right-hand side of (45), respectively.

Proof. From (37) we obtain the relation

(47) ¢ (2)=9"(2)

so that it is sufficient to consider only the case Im2z=0, |z|<l. For Imz=0, |z|<1,
the inequalities (43) and (45) follow from Theorem 6 (II). For Im2>0, |z|<1, accord-
ing to Theorem 6 (I), we obtain

(43") |A’|s| ¢’ (2)|=|B'|, where arg B,<arg D, ;
(45) |B'|<|9'(2)|=|A’|, where arg A, =arg D, ,
where D, is the point

R:
(48) Dy=1+ip.

Thus we obtain the assertions (43) and (45). The assertion (44) follows from the
inequalities

(44") IC=9' (@) |=|D'),
arg B, =arg D,, and arg A,<arg D,,
where C’ is the foot of the perpendicular from the origin to the chord A’F’, and D’
is the point D’'wD}, i. €.
(49) D' w1 +i2

In Tact the point (49) is realized by the derivative of the function @(z)=l(z,?) for
t =Re(1/2). The modulus of C’ is

(50) |C' || B—A'| | Im gy |=

Imz(l-|z 9

[[T=AF
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The coordinates of C’ are
PR Ll
51 C=trmta—p

for some A, 0<A<|1, satisfying the condition
A 1—A
(52) 1C = ggzpta=zp |-
From (50) and (52) we find the number A in (46) for which (51) becomes

izImz(1—|z[?)

(519 S FE( e

The derivative of the function (46) yields the point (51).
This completes the proof of Theorem 7.
From the geometric argument used in the proof of Theorem 7 the following result

follows immediately.
Theorem 8. For each given z from the disc |z|<| and for each function

¢ € N,, the inequalities

1 , 1
(53) arg (—l—mgargtp () = arg (g for Imz=0,
and
1 ’ 1 .
(54) arg T p=arge (z)sargm, for Im2<0,

hold true, where for Imz=+0 the equalities hold true only for the functions ¢(z)
=[(z, +1), respectively.

Theorem 8 was obtained as in our paper [8] by means of another method.
4. Results for the class Vv,. These results can be obtained from the preceding theorems

or the class N, by replacing z with 1/z.
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