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INVARIANT ASYMPTOTIC STABLE TORI
IN THE PERTURBED SINE-GORDON EQUATION

LJUBOMIR GAVRILOV

On the basis of the techniques developed in [9] it is shown, that some perturbed nonlinear equa-
tions including the sine-Gordon equation, the nonlinear wave equation and the one-dimensional Klein —
Gordon equation possess invariant asymptotic stable finite-dimensional tori in a neighbourhood of the
origine in a suitable functional space. Each torus can be considered as obtained after a finite number
of Andronov — Hopf bifurcations, i. e. the hypothesis of Landau for the evolution of turbulence [7] is
realised.

1. Introduction. As Nikolenko [9] has shown, in the perturbed Korteveg — de
(Vries — Biirgers equation

1.1) Uy Uyt Wl = Vil + €L+ f(1)

with boundary condition u(x+2m, £)=u(x, ¢) because of the competition between the
viscosity v and the influx of energy supplied from the term eu+ f(u), there arise com-
plicated limit modes. In particular, for a certain class of nonlinearities f, the equation
possesses invariant asymptotic stable tori whose dimension increases when the visco-
sity decreases. This corresponds to the hypothesis of Landau for the evolution of
turbulence ([7), §27). An analogical phenomenon is observed in the perturbed Schrd-
dinger equation [9]. Equation (1.1) generalize the Korteveg — de Vries equation in the
case of viscous flow. We shall note that because of the fact, that the Schrodinger
equation and the Korteveg — de Vries equation can be interpreted as infinite-dimen-
sional Hamiltonian systems, their solutions are fibred on finite or infinite-dimensional
tori, i. e. the behaviour after the perturbation is qualitative different. All we said up
to now holds (as will be shown) for the sine-Gordon equation:

(1.2) Upy=Uy—siny, u(x+2r, t)=u(x, t).

It is considered as ordinary differential equation in a suitable Banach space — 2. The
corresponding Cauchy problem is investigated in the Appendix. In 3 the techniques of
the normal forms is applied to the perturbed equation (1.2). The following normal form
of the perturbed sine-Gordon equation is obtained:

d N
. — U=\ I o N+ ...
(l 3) dt u, Ran+un( RN kiull )+

The dots mean nonlinear terms of order higher than three and N¢Z, A, = 0d/2 —dn?
+(028%/4 —ad?n? —§%n' — 1 —n?)'2, Here 8 is a small parameter. If we fix the sufficiently
small parameter 8 and then move a we see that when a passes through the point 2n?%
then a pair of eigenvalues intersect the imaginary axis. Consider the truncated equation

’ d 4
(1.3) 4 n=Mltn + u,(“X_NO:. |ezy ).
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Invariant asymptotic stable tori in the perturbed sine-Gordon equation 27

After a finite number of bifurcations in (1.3), we shall obtain a finite-dimensional
torus, which is invariant and for suitable & it is asymptotically stable. The main problem
is how to prove that this remains true for equation (1.3). Unfortunately the known
methods are applicable only for the first and the second bifurcation. The problem of
the third bifurcation is not worked out ([3], p. 231). That is why we shall drop this
maybe more natural way. Till the end of the paper a will be fixed and we shall not
mention the word “bifurcation”. Here the above reasonings may be considered like
heuristic, but they will be justified by Theorem 4.1. which is the main result of the pa-
per. The techniques used in the proof is roughly speaking the contraction mappings
theorem and the idea of the Andronov — Hopf bifurcation.

The same holds for the nonlinear wave equation and the one-dimensional Klein —
Gordon equation, as will appear further.

2. Functional spaces and change of variables. Let us consider the differential
equations

Uy=U,,—sinu — sine-Gordon
Upyy=Uy—U — Klein — Gordon
Uy = u,—u +V(u) — nonlinear wave equation

'n the periodic case u(x+2n, f)=u(x, t). As it is well known the above equations are
Hamiltonian systems. In this paper we shall investigate the qualitative behaviour of the
solution of the following perturbed equation:

(2 l) U” = uxx—u + aaul + 28“!11—28’“(1:: +f(ut)+ g(u)'

(2.2) w(x+2m, t)=u(x, ), a€R.

Here f and g are nonlinear operators described further down, >0 is a “small” para
meter. We denote by W, the Banach space of 2n-periodic real functions u(x)=X, ¢ z #,™"

u, =u_, such that d*u/dx*¢ Ly[0, 2x] with a norm ||u|]v‘ = (Zacz(1 + |n|?*.|u,|2)?
k>1" We identify any element of W, with some infinite sequence (#y, 2.1, #42 ...),

where u,¢C, u_,—u, If we drop the condition u,=u_, with the same norm we shall
obtain the Banach space W:c. The operation “multiplication” in W,c is introduced in
the following way: (av), = Zpsg=nlyVe U=(lo, Usr, ... ), V=(Vo Vi1,...). The number
u, we shall call n’s Fourier coefficient of the function u. Henceforth W will be con-
sidered like a real Banach space. N

Consider the Banach space W4, consisting of the ordered pairs (:) where u¢ Wy,
ve W, with a norm ”(:)“V= @l g, +11¥]w,
5

If we denote

0 1 0
u
A‘( —1+:},—2st§4. ad + 255)' °(v) - (g(u)+f(v))
the equation (2.1), (2.2) takes a form

(2.3) _:; =Aw+ ®(w)

— ordinary differential equation in a suitable Banach spase ;. With the help of the
multiplication introduced thus:
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(3)-(%) = (W)
W becomes an algebra. What is more:

Lemma 2.1. W is a Banach algebra.
The proof is a direct consequence of (5], Theorem 2. 17. p. 555. W, and Wp,c are

Banach algebras, too. The space Wi'€= Wi,cX Wi is defined by analogy.
Denote by #, the class of all nonlinear operators f defined in some neighbour-
hood of the origine in W, and such that f: u— X2 ,f,.u* where f, are real numbers

and the radius of convergency of the power series £, f,.2% 2€¢C is not a zero. It
is clear that the restriction f|, maps some neighbourhood of the origin in W, con-
&

tinuously in W, for any integer k=1 Let Sis a neighbourhood of the origin in W, and
0: S— W, o()= EQ @x(1)

is (Frechet) analytic operator in «, i. e. there the above power series is sumable and
¢,: W, — W, are homogeneous of order &, continuous operators such that

ox@)=0, (1, u, ..., 1)
k-time-s—

for some k£ — real linear continuous symmetrical operator

Op: WX WX ... X W — W,

k-times

The n’s Fourier coefficient of the function (@,(#))(x) has a form

1 2x
e —inx —_
Pu(1), =5, b{ @ () x)e~ " dx = . E i Do, p, g lpy == o
R

where u,,=-21n— [Fu(x)e~#*dx and ¢ are complex numbers. Let ¢ and y are

P:-Ps”-'ﬂk

two analytic operators. If |¢ , =V, ’kgo. we shall say that y majorizes
’ k 110 L

PuPy - - -
¢ in their common domain of definition (it is clear in this case the domain of ¢ con-
tains the domain of y). The class of operators analytic in some neighbourhood Sy, (0, 7)
in W, and majorized there by operators of #, we shall denote by #. If ¢¢#, and

¢: u—ZX7 , f,.u* then it is easy to see that j Pk:() for £}_| p;+n and ¢},

=f, for £¥  p,=n. Hence, it w¢#, then w;“hw,fo for T pi¥n.

..... 2,

Denote by .# the subset of J#, consisting of nonlinear homogeneous operators of
order three. Henceforth we shall suppose that f¢.#, g€, gu)=Xy , gu), where g(u)
are homogeneous operators of order k. Now we shall give some general definitions.

Let the domain of definition of the linear operator A is D, of the nonlinear ope-
rator ® is Do, S is a neighbourhood of the zero in some other Banach space in which
D, is a dense set. Let A: D, - S and D,=De. Roughly speaking, we call a solution
of (2.3) classical or generalized according to that, if for each £ it lies in D, or Sres-
pectively. Now we proceed to a full definition. Let S is a neighbourhood of the origin
in the Banach space B and D, is dense set in B. Every continuously differentiable
(in the sense of B) function of the time £¢(0, 7], taking values in D, and satisfying
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in the interval [0, 7] the equation (2.3), we shall call classical solution. Every conti-
nuous function (in the sense of B) u(f) of the time £¢[0, 7], taking values in S, we
shall call generalized solution of (2.3), if there exists a sequence of classical solutions
uniformly converging on the interval [0, 7] to u(¢) (with respect to the norm of B).

The problem of finding a generalized solution u(£), £¢[0, 7] of (2.3), satisfying
given initial conditions, we shall call Cauchy problem. The local solvability of the Cauchy
problem for (2.3) with nonlinearities f, g¢ # and suitable S and D, will be given in
the Appendix. This will be enough for our purposes. Hence forth we shall drop the
adjective “generalized”.

Let H: S— H(S)=B is a diffeomorphism, such that holds

(2.4) H(SND)=H(S)ND,.

Consider a classical solution W(¢) of (2.3), such that W(¢)¢H(S)N D4 for each
t¢[0, 7). Then S D, will contain the set of all values of the continuously differen-
tiable function w(¢) = H—'(WAf)). For the vector function v(#) holds the equality

dw 47 dv =(A+ @) o H(v), where %g: B—B is the Frechet derivative of the operator

dat  dv dt
H: S—B at the point v¢S. The operator %’71 is inversible and (‘}d_’é “1=d(l;:). Conse-
quently we can write down
d dH
(25) - =G e (A+®) o H(v), telo, T).

The equality w= H(v) connect both the classical solutions and the generalized solu-
tions of (2.3) and (2.5). Really if {v,} is a sequence of classical solutions of (2.5) and
B B

v,—=v, then H(v,)=— H(v) and therefore w=F{(v) is generalized solution of (2.3).
The converse is true by reason of (2.4). Thus the correlation (2.4) becomes a correct-
ness condition for the change of variables w=FH(v) in equation (2.3).

3. A normal form of the perturbed equation. The reducing of the perturbed
equation (2.3) to a normal form will be done by two stages. First we shall diagonalize
the linear operator A and then we shall cancel some nonresonance coefficients of the
nonlinear part. Further down we suppose that B =W, D, = W3. The natural immer-
sion Wi~W?} is continuous and it has a dense image.

3.1. Here we diagonalize the operator A. It means that in Fourier co-ordinates A
will has a form of a diagonal matrix. The eigenfunction of the operator are

0 1 [ei™ 0 ) 1 (e >
llw) +2: (o ) (eme) 50 ) mez):
The corresponding eigenvalues are {A,, A,: n€Z}, where A, =a8/2 — 32+ /a%6%/4 — ad'n?
—8%m*—1—n?. Consider the linear operator defined like this L: Wit~ Wis n=0,n¢Z,

(Y):L{/E)v ueW,iq ‘.‘GWm V€W, ;EW"-C

v

° .

v=(Vgy Vals«o: ) v= Vo Val,...)
u=(u°, Uy, . ..). l;=(l;0, ;l*h...)

Vo= A, + ‘;u' V.,, =—lnun + ;‘n'
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Define the operators L, and L, with the help of the equality

()

Lemma 3.1. The operator L, is R-linear homeomorphism between Wit and W.c
Proof. Let us see first that L, is continuous.

() i nan | ° )
24 e =l i = (LR gty + 0y P

SVZCE (LA (Pl s E (4RI Pt (R g )
<e(la B, ot i) e (3 lgase.

The operator L, is inversible. Really L1(3)=Vv Up=p—Vop) | Ay — 2,y =(ApV_p

— — u
—2, V) / (A, —1,) and from v we can uniquely restore (u) Since limA,/n? = —8§+1i8,

then L, and L' are correctly defined, i. e. L, is surrection. With the help of the open
mappings theorem (see for example [6], p. 88) we obtain that L, is open and hence
L1 is continuous.

Corollary: Since L, is linear operator then L, is a diffeomorphism. By ana-
logy L, is also a diffeomorphism.

Consider again equation (2.3). Let S=B8== W}, The function ®: W} +Whi, a5 for
each integer k, s=1 is an analytic. The linear operator A: W3— WA is continuous.Accor-
ding to the general definitions from 2., we already know what is the meaning of the
terms “classical” or “generalized” solution. Let us do in (2.3) change of variables

(5)-pue=(; o)

We obtain: L% - %Lw:{;(E):Lo(A+d>)(w)=Lo(A+¢b)oL;‘v.

As Li'v=w=L3"v the equation mentioned above is equivalent to the following two
equations:

(3.0 A vaLio(A+ ®)oLiN, g v = Lyo(A+ ®)oL7'v.
If weD, then v¢L,(D,)=Ws3c. The operators L,ALT" and L,AL7' are correctly de-
fined in Wjc. Really

LALT (Wy.c) s LLAW3)= L (W)= Wi.c

LyALT (Wic) = LA(WS)= L(WR)== Wi c.

The operators L,oOoLT' and L,oOoL{' are correctly defined in Wjc too. Denote
5(v);L,oOoLT'v and 3(9) ~Lyo®oL;"'v. The operator L by construction diagona-
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lize the linear operator A. Consequently in Fourier co-ordinates (3.1) looks like
this:

(3.2) ':E Vo= Ayt 6(v)m 5‘ :ln = Xu;'nd}- 6( ;')n‘

If u¢ W,, then u,—u_, and v,= v_,. From (3.1) we obtain that the both groups of
equatons are conjugated and from the first group of equations in (3.2) we can restore
completly the second. Further down, as is usually done, we work only with the first
roup (which is conjugated to the second), all the time keeping in mind the second.
ust this we shall mean referring further to (3.2). N

Consider in more details the nonlinear operator ®, ® =Llo‘boLTl. It is easy to
see that
v,— V_n AV _+Av

- e(nx z n_—n _Il n 3
e A E,

B(v) =g,
n

Here we shall introduce another two classes of operators, which will be impor-
tant for us. They will be defined on the analogy of # and .# in the complex Banach
spaces Wi.c.

The class of analytic operators, defined in some neighbourhood of the origin
in W, ¢, we shall denote by #c. The class of the homogeneous of order three opera-
tors 4 ¢ #¢, which in Fourier co-ordinates, have the following form:

H)n :F+q§: = Sh: g0 ottalts + h”‘: q sHi—oltalls + h:.'q'.s gt —qlts

n - n n - n - — n - —
Fhy g5 Upliqh—st h;—_ 7. H—p li—ats + h; o uv"—-:'*'h; et h "t U pll_gli_;)

where there is an operator 0¢.#, defined in W), such that holds the underwritten
Assumption 1., we shall denote by .#c.
Assumption 1. For any four integers p, ¢, s, n such that p+¢+s=n holds,

max(lh:ﬂ--‘l' lh;’q.,l’ e ih%;:’—‘)sez.q,: go-

If we have two operators h¢.#c and 0¢.# satisfying Assumption 1., then we
shall say that 6 majorize 4. If is given the operator 4, formally defined with the help

of the set: {Apgs, Ay o - s h:_;;_ E :qz““ and exists an operator 0¢.# which ma-

jorize h, then it follows A¢ #c. Indeed then the power series written for A(x), (where
h(u), is the n’s Fourier coefficient of k(u)) is majorized by the corresponding power
series, written for 6’(«),. Here 0’¢ .#c and is defined by the equality

O(@)=0 T (it i) exp (k).

Remember now that g¢#, fe.# and consequently 6(,0 In accordance with the
general definitions from 1 we already have a definition for a classical and gene-
ralized solution of the problem (3.2). Here D,_l AL =Wic, B=Wc.

3.2. Let us do in the perturbated equation (2.1) (2.2), written in the equivalent
form (3.2) correct change of variables v=u+ h(u)=H(u), where h¢ #c. For suitable
r>0 H is a diffeomorphism between S,.'C(O. r) (aball in W with a centre in the
origin and radius r) and its image H(Sy, (0, 7)). Indeed then (I+h)r=Ep (—h)
Now we can realize that
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/-I(SWLC(O' r)) W DLlALTl = H(SWl,C(O’ r) ﬂ DLI"‘LI_I )'
That is true because H(DLl..qu)EHKWJ.C):WJ-CEDz_lAL-l- Hence the change v=H(x)
1 1

in (3.2) is actually correct. Let us reduce still further 7 so that the set {u¢ Wi c: || %||<l}
contain completely Sy, (0, 7). It is possible because the sets are neighbourhoods of
the origine. Then holds

7 =ur o = E (—y

and consequently the equation (3.2) has in vanables u=H7Yv) in a neighbourhood of

the zero in Wi the following form: ‘;: dd': = =L, o(A+®)o o Li'e H(u) or
du _ 2 (— dh 1
(3.3) Z ~k2_20 da ) e Lie(A+ @) L o (14 A)u).

Denote A —L,ALi". Nullify the homogeneous terms of order three on the right-hand
side of (3.3) (there are not such terms of order two) we obtain the equation:

—457\u+2h(u) 4-®g(u) = 0 for determination of the operator 4. (Remind that

B(u)=Z73B,4(u)).
Here we shall give the following definition: Let f: Wic— Wc, g: Wjc— W,c
are differentiable operators, j<i, and g(v)¢ Wic for ve Wic. We call the operator

dfg( v)— dgf(\v) ve Wic commutator of f and g and denote by [f(v), g(v)]. For the
linear operator A we shall use the symbol [Av, g(v)] =Ag(v)— dev. The equation

for determination of 4 takes a form
(3.4) [Au, h(u)) + ®yu)=0
and is called a homologous equation connected with the linear operator A ((8], p. 166).

But jﬁva_- 3h(u, u, v). Now (3.4) can be written down in the following form:

(3.5) A h(u, u, u) —h(Au, u, u)—h(a, Au, 0)—h(u, o, Au)=—Dyu).
Recalling that 2¢.#c and taking into consideration that A.,:)._,. we obtain:

(36) Zh:‘ll,-' upuva:(xn - ll a)+ zh’,q s (l A’ - ;'.v) a_pligls

+EA v,?z_qa,(x,—x,—i,,—x,) +E2h J_(x, — Ay —Ag — AN lglt_,
FEAL gty (hy— Ay M) BT (=R, —hg A, Uy ligh_,

FEIR" g (Ay—hy =g =R)+EA (b, —A,—Ky — M),

- L Ga— b—r -
®, (), = l[ Ra(.u = eih) g—inx g x

—Au
- = l_ J_l__..l.‘. AX) p—inx
3 J/(.fl A% er)e dx,
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where the symbol X means summation by all integers p, ¢, s, such that p+g+s=n.
The eigenvalues of the linear operator A (defined in (3.1) and (3.2)) are {%,, A,: k¢Z}.
Since we want to solve the homologous equation (3.6) we have to calculate the reso-
nances of order three (for a definition of resonance see [8], p. 164). Let at least two
of the integers |pl, |¢!, |s| are less or equal to N, where N is a fixed natural num-
ber. Then the following two lemmas hold:

Lemma 32. /f §=0 and n=p+q+s, then any possible resonance correlation
between the complex numbers X, hg, hg Ay Ay kg by A, has a form hy=0h,+Xg+ M,
where n=p, g=—S or n=q, p=—S.

Lemma 3.3. For all nonresonance (in the sence of Lemma 3.2) correlation there
exist(real numbe)rs exy >0, 8y, >0, sack, that if n=p+q+s and 8¢[0, ], then

e
[t Ap k= Aot Ag|>Ep

Consider the function e(x)=|J1+x%| —|x|. For x=0 we have &'(x)=x/\/1+x?

—1=(x—Vx2+ )NJ1+x2<0, €(x)=(1+x%)—32>0.
Consequently for x>0 €(x) is a strictly decreasing function. It is easy to see from
the last equality that g(x) is convex. Then for any a=0 the function f(x)=¢(x)—e(x+a)
is decreasing. Let us assume that for =0 Lemma 3.3 is proved. Let N..>N\ is anin-
teger, such, that if >N, then n?—(n—12>2(a + N?)+n, i. e. Nu>2(a+N?)+ 1. Remind
2
that k,,:—"; ~8n’+¢51i—a8’n’—8’n‘——l—n' and a>0, 6>0. We shall assume that
8>0 is such that ReA,=a8/2—8n2 If |p|, [q/, |s|. |n]| < Nw, then |1, (8)—A,0)|=d8c,
for a suitable positive constant c¢;. Then for 8¢[0, €5/8c,] Lemma 3.3. is proved, if
only instead of e, we replace €,/2. If at least one of the integers |p|, |¢/, |s| |n|is
oY G

greater than N.., then for any nonresonance correlation @(8)=2x,+ 2,+ A;+ A, we have
| Re 9(8)|=8m, where m=max(|p|, |¢|. | s, |n]). On the other hand, |Im ¢(5)-—Im ¢(0)|
< 8m?; for a suitable positive constant c,, /Im @(0)=¢(0) and we obtain

[Tm @(8)| = | Im ¢(0) | — | Im @(8)—Im @(0) | =€, —&2m2c;.

But | 9(8)| =max (|Re ¢(3)), |Im @(8)|)= max (e — 33m3¢c,, dm). Now, if dm <\ €,/2cs,
then e, —8m3cy>¢€,/2 and consequently Lemma 3.3. holds. For the proof of Lemma
3.3. to be complete we have to prove it only in the case §=0.

Proof of Lemma 3.2. and Lemma 3.3. in the case §=0.

32.1. Obviously |h,—A,—Ag—A,| =4.
3.2.2. Consider the complex number i,— A,— A;—2,.
i) pgsn=0. Let for example p=0 and ¢sn+0. Then n—g—s=0 and

A —Ao—Ag—h,=i(1+|n| + | q| — | s|+e&(n)+e(g)—e(s)).

As n=gq+s, then 1+ |n| + |g|—|s| is an odd integer. On the other hand, |e(n)+&(q)
—g(s)| <2e(l) and €(1) = 0,414.... Consequently |A, —A,—A,—A,|>0,1. For s=0
| Ay —Ap—Ag—A,|=2. If p=0 and gsn=0, for example ¢=0, then
|Aa —hy—hg—A,|=| 24| || s | +&(n)—&(s) | =2,
because n=s5+0+0. The other cases are considered by analogy,
ii) pgsn+0. Then

ha—hp—hg—A, | =|n|+|p|+]| ¢|—|s|+e(n)+e(p)+e(g) —e(s).
3 Cao. Cepauxa, xu. |
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If [n|+|p|+]|g|—|s!| is even and is not zero, then its modulus is greater than two.
Bult »lﬁ(n)d+ e(p) + e(q) — &(s)| < 3e()). If [n +[p|+[q|—|s[=0, then [n], [p], |¢]
<|s| an
| e(n) + () +2(q)—e(s) | = max (e(n), &(p), e(g))Ze(N).
Consequently in this case
| Ay—Ay,—Ag—A, |=min (e(N), 0.6).

3.2.3. Consider the complex number A,—A,—As— A
i) pgsn=0. If at least two of the integers p, g, s, n are zeros, obvious solutions

are p=¢=0, n=s; p=s5=0, n=¢q; p=—s, n=q=0; n=s5=0, p=—gq.
If just one of the integers p, ¢, s, n is zero, for example n, we obtain:

A=y —Rg—A,|=| 1+ | p|—|q|—|s|+e(p)—e(g)—=(s) .

| e(p)—e(g)—e(s) |<2e(1)<0.9 and hence | hy—hp—hg—As|>0,1. The cases p, ¢ or s=0

are considered by analogy.
ii) pgsn=0. Essentially this is the only nontrivial case. We have

| Ap—A,—hg—As =] |+| p|—[g — | s|+e(n)+e(p)—&(g)—E(s) |-

Because of |s(n);|-s(p)—e(q)—e(s)|<4e(1)<1,8 we conclude |n|+ |p|—|g| —]|s|=0.
(Otherwise | A,—A,—A;—A;[>0,2). Thus |n|—|g|=|s|—|p|. Without loss of generality
we can assume |n|<|q|. If |n|=|q|, then |s|=|p| and we obtain the solutions n=g,
s=—p. If n=—q, then —2g=p+s, for p=—s we have n=¢=0, s=—p and for
—s we have n=—g=p=s. The more general solution n=s, p=—gq subsumes the
last solution. The above solutions are so to say obvious. We shall show that in the
considered case there are not others. _
And so, let |n|—|g|=|s|—|p| and for example |n|>|q|, nFs. Then |A,—A,—Ag
—|=le(|n])—e(|g)—e(|s]|)—e(|p|)| Let for a definiteness |¢g| <N. We have

= ry—hg—hs|=|e(| g )—e(| g+ n|—|g)—E(Ip ) —e(lp| + |s| =PI
=min (|e(|g|)—e(|n])—(e(|g|+D)—e(|n[+1)]
le(g))—e(|n])—(( g|—D)—¢&(|n|=1)))=a(|n], |¢]).

The last inequality is true, because as was said earlier, the function f(x)=e(x)
—&(x+a) is strictly decreasing for =0, x=0. Let ¢,>0 is such, that for |n|>c,
re(n)—e(| n |+ 1)<(e(N)—&(N+1))/2. Recalling that |¢|=N, we obtain

a([n], [g[)>(E(N)—e(N+1)/2 (for [n]>c,).

On the other hand, there are only a finite number of integers ¢ and n such that
|n|<c, and |g| = N. Observing that a(|nl, [¢[)F0 for |n|F |g|, we obtain there
exists £y>0so that for any values of p, ¢, s, n such that |n|—[g|=|s|—|p]
pgsn=+0, | n|>|q|, n=s holds |A,—A,—A;—A, >g,+0 for a suitable constant €. The
condition |n|>|g]| is not restrictively. The cases |s|<N or |p|<N are considered by

analogy.
3.2.4. The case A,—\,—X,—A,= 0 is considered by analogy with 3.2.2. So Lemma 3.2

and Lemma 3.3. are proved.
Now in the homologous equation (3.6) we can define the coefficients of 4. If at
least two of the numbers |p|.(ﬂq|. |s| are greater than N or that is not so, but the
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coefficients of # with such indices are multiplicated in (3.6) by a resonance (in the sense
of Lemma 3.2.), then for such coefficient we replace

n
AL =h"_ =h" _=h"_ =R" _=h"__=h"__=hH" =0
P @S PGS P.4q. s P.q. s 2.4 P, s 2.4s s

In all remaining cases we calculate uniquely the coefficients of 4 by the homologous
equation (3.6). Because of Lemma 3.3. the modulus of any “small denominator” will be
greater than €. In other words, the just defined operator is from the set .#c. Let us
write down the normal form of (2.3). From (3.3) we obtain:

@7 - Eo(——) o(A+ D) o Hu) = Au+ z (——-) o(Au, k(W) +® o (I+h) ().

Taking into consideration the definition of %, we obtain in Fourier co-ordinates:
d N
(3.8) Eu,,:l,,u,+u,,(k_}:_ﬂ¢:.|u,,;’)+. .

where the dots mean nonlinear terms of order three, five and more. The nonlinear
terms of order three contain only addends of the tipe: u,uu, u_,,uqus, U_yl_gldg,

u_yu_gu_,, where at least two of the integers |p|, |¢|, |s| are greater than N. We
used the symbols:

k}'i)
(). - )|x - ).‘p-
d): = 3f:,n,—n ofog . lkn "/(An _'Xu)a—sg:,n,_n/(kn—in)a'
Now we shall show that after the change of variables u= /(v) the equation (3.2)

has a form Z—:‘:Zu-i-a)(u). where @ is a nonlinear operator of the class #c. Indeed
according to (3.7):

(D::Gf"k__k n.k,-k /(xn—)‘n)'.;;"k_xk i’v ”:Fk

dw = I (— 50 Au h@) + Bo(+h)w).

By the definition of % (see (3.4)) we conclude that the operator [7111, h(u)] is of the class
#Mc. On the other hand, 5(1&. he¢#Mc and then 5o(l+ h)€Hc. But (I + Zg)"" is

a linear operator and consequently ® ¢ #Fc. Further for us will be important as well
the equation

N
(3.9) Up=holly+ u»!(‘}:_“v @;. |y [2).

In other words (3.9) is the “shortened” equation (3.8).
Example. If the system of linear equations

N
Red,+ I yi.Re®;=0, n=0, £1,..., +N

has a solutlon (Yo Yaro-+-y Yao) and y,=0 for i=0, +1,..., = N, then the set
T={u= M D u, | ={ym n=0, +1,..., +N} is an mvariant torus of equa-
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tion (3.9). Its dimension is equal to the number of the nonzero co-ordinates y, y.1,
.., y=n. On the torus (3.9) looks like this:

d . N
i Un=i(Im, +k:Z_N m®7.y,), n=0, +1,..., =N
and consequently 7 is filled with a family of periodic trajectories with frequencies

N
Imi,+ £ Im®7.y,, n=0, £1,..., +N.
k=—N

4. Conditions for stability of the invariant tori. If the invariant torus of equa-
tion (3.9) is stable, then is naturally to expect in some neighbourhood of it to exist
an invariant stable torus of equation (3.8). This is proved in 6. In that section we
shall investigate the condition which has to satisfy the nonlinearity ® in order to
possess (3.9) an invariant asymptotic stable torus. The idea which we shall follow
is the idea of the classical bifurcation of Andronov — Hopf. Denote

Wi={u= X u,e™: u¢Wyc, Imu,=0, Reu,=0, |n|<N}.
n¢Z

Define the map p: Wi c—W} thus: p(u)=X . <nv u,| €™ +Z x>~ u, ™. The triple
(Wi,e, W}, p) we shall call a degenerated bundle with base W}, fibred space Wic

and projection p.
Proceed in (3.9) to new co-ordinates u,=p,.exp(i,), |n| < N. We obtain

d 9
o= Pyt PahatEY _y 2. @), |n|<N. It is clear that (39) is equivalent to
the following three equations:
dp N
(4.1) @ =PRed,+ I pi.Re®)) [n|<N,
9 N
(4.2) W=lml.,,-|—lb£_‘v p;.Im®; |n|=N,
du, N o N
(4.3) i “UaGut T pi.®) [n[>N.

If the system (4.1), (4.3) has in W}, a stationary solution t=X, ¥  1,e** 1,=const,
then (3.9) has in Wjc an invariant torus 7.=p~'r, coinciding with the fibre over the
point © of the base W}. The dimension of 7% is equal to the number of the nonzero
co-ordinates t,, £=0, *1,..., +N. The existence of such a torus is garanteed by
the following:

Assumption 2. The system of equalities

N
(Rer,+ X 1t Re®)y,=0, n=0, =1,..., =N
k=—-N

has a positive solution t=(t), t,1,..., T.a), i. € suchthat t,>0fori=0, *1,..., +N
and at least one of the numbers 1, i=0, +1,..., =N is not zero. Moreover is fulfill-
ed the condition: det(Re @)X~ 0.

We shall note that the second condition in Assumption 2. is very important (al-
though in [9] is omitted), because it ensure the uniqueness of the solution of the system
in Assumption 2. The case :
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det (Re @)V =0

is also interesting but leads to manifolds, which are not homeomorphic to finite-dimen-
sional tori (for example the manifold {|z,[2+|2,2=1; 2;, 2,€C} is not homeomorphic
to the torus {/z;[2=1; i=1, 2, 3, 2;€¢C}) and that is why here will not be considered.

If Assumption 2. holds, then the system (4.1), (4.2), (4.3) (and also the equivalent
equation (3.9)) has an invariant torus 7.=p~—'r. It is clear the torus 7. is asymptotic
stable if and only if the stationary solution t of thesystem (4.1), (4.3) possesses that
property. It was the reason to be introduced the last system.

i) Case of a periodic solution.

Let for some natural number m, |m|[<N holds Rel,>0, Re ®”<0. Then (4.1),

(4.3) has a stationary solution t=(ty, T21,..., 12a), Where 1,,=(—Re k,,l/Re(l)g)"~2 and
t,=0 for n3m. Replace now x,=p,—1, |n|=<N. We obtain
A Xp=(Red, +3Re @7 22 )xpt. ..
d 2
4.9 4 ¥n=(ReX,+Re @} 12)x,+ ... n¥m, |n|<N
%—us=(k,+¢fnrfn)x,= |s|>N.

Taking into consideration that Re An+3Re ®”= —2Re A, <0, we conclude the zero so-

'l_ution of (4.1), (4.3) and simultaneously a periodic solution of (3.9) is asymptotic stable
if for some c;>0 holds: N
Re
Rer,——™2 . "L —C.
eAy— o Re ®" <—c;.8

m

for any n==m. (For the proof see [3], chapter 2A.) We shall note that the spectrum of
the unbounded operator A is a discrete and this is an essentiall condition.

ii) Case of /-dimensional torus.

Let Assumption 2. is satisfied and the number of the nonzero co-ordinates is just ..
Then the equation (3.9) possesses an invariant /-dimensional torus 7.=d'tr, where t
is a stationary solution of (4.1), (4.3), t=(t, Tx1, ..., T2n). In co-ordinates x,=p,—1,
[n|<N the system (4.1), (4.3) takes a form:

dxn N R N
—"=x(Rer,+ I 1..Re®)+2 I 1,1,Re®}. xp+ ...
(4.5) N . Ax¥

u N

- =u,.(k,,+‘=2-N 2O+ ...,
where the dots mean nonlinear terms. The zero solution of the system (4.5) and simul-
taneously a stationary solution of the system (4.1), (4.3) and invariant /-dimensional
torus of equation (3.9) is asymptotic stable ii the following natural assumption is sa-

tisfied. (See [3], chapter 2A.)
Assumption 3. Consider the numbers:

i) the eigenvalues of the [/ matrix (a,)
N
a,=2t,1,Re® i+, a,=Rek,+ ‘E_Nti Re @i +212. Re ®!

b J take these integer values from the interval [—N, NJ, for which 1, 0, ©,30.
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ii) for all integers n, such that [n|>N or [n|<N but t,=0, we consider the
numbers Rek, +Z& . 17.Re @7

Then there exists function R(8), >0, such that any of the above number lies in
the left semi-plane (of the plane C) and the distance between it and the imaginary
axis is greater than R(3), where Li_n;R(S)/S:c, and c;>0.

Let us observe now that the topology of equation (3.9) is determined by the num-
bers Re ®7, which depend only upon the nonlinearities f and g;. Introduce in .# the
following norm: If ¢, y¢.# then ||o—v|| = sup |@;—w;l where @r=6072, _,

=0, +1,+2,... f
kn, o?=3¢: . This norm in a natural way induces a norm in .4%=.4X.#. The
following theorem is the central result of the present paper.

Theorem 4.1. For any natural number | we can find open sets D, .#2, A,=R!
and a constant 8, such that if (gs, f)€D,, a¢A, and 3¢(0, 8,), then equation (2.3)
possesses an invariant asymptotic stable manifold (in W‘;’) homeomorphic to l-dimensio-
nal torus. Moreover, max ||u||gs = O(y ), min ||u||gs =0/ 3), where Ts is the above

af 7's 1 af T‘ 1
manifold.

In order to prove Theorem 4.1. first we shall prove the following:

Theorem 4.2. Let the nonlinearities g¢ ¥, f¢ # are such that for some con-
stant &, and any §¢(0, 8,) Assumption 2. and Assumption 3. are satisfied. Then
equation (3.8) possesses an invariant asymptotic stable manifold Ts— W, c, homeomor-
phic to l-dimensional torus. The manifold can be represented in the form T's=q(Ty), *
where ¢ is homeomorphism,

Te={u€¢Wic: |uyl=14 |R|<N; 4y=0, |R|>N}

and max || o(u)—u lw,lc<r7.6. c;=const.

ufT, ’

In more details proofs of Theorem 4.1. and Theorem 4.2. are given in 6. Here we
give a short scheme of the proof of Theorem 4.2. without going into technicalities.

Let Bs is a suitable 3-neighbourhood of the invariant torus of (3.9). Assume the
dimension of 7: is 2V+1. Define the projection

N
n: Bs— T, n(u)= I v 1,.exp (tkx+iargu,).
For any sufficiently small & the triple (Bs 7., =) is local trivial bundle with base T,
projection m and fibred space Bs. Let the shift operator along the trajectories of equa-
tion (3.9) is N, where ¢>0. Define on the class o, consisting of sections of the bundle
(Bs, T., ™) an operator L: wo—o, so that for any

o€ {(Lo)u): ueT}={N{o(u)): u¢ T}, t=const.
With the metric p(9,, ¢;)= max | ¢,(4)—@Hu)||w, . the set o turns into a complete
ugT,

metric space, while the operator L is contraction mapping (which is naturally because
of the asymptotic stability of the invariant torus of (3.9)). That is why the operator L
has a unique stationary point n=Ln which possesses the feature asymptotic stability.
The graphics of n I's={n(«): u¢T.} by construction is an invariant asymptotic stable
manifold of the shift operator along the trajectories of (3.8) —N,. The projection = is
homeomorphisin between the section n an the base 7. Hence I'; is homeomorphic to
2N+ 1-dimensional torus.
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5. The shiit operator along the trajectories of equation (3.8). The shift opera-
tor along the trajectories of equation (3.8) — N, will be represented in Fourier co-or-
dinates like a sum consisting of the shift operator along the trajectories of equation
(3.9) and additional “small” terms. Estimates of the “small” terms will be done but it
will be used only in 6. So the present section has solely subsidiary character.

As the operator N,u is differentiable with respect to # in Wjc (see the Appendix),
then for any initial condition z¢ Wi holds

3
Na= T gu, 0]k +B, o).

(See the Taylor’s formula in [4], 8.14.3) Here g, are homogeneous operators of order %
with respect to z and also for some constant ¢;>0, | B(u)—B(Vv)||=cg|lu—v|.(|z|?
+|Iv|]®), B(w)=B(z, ), ||B(u)|=0(z|*). Replacing in (3.%) and equalize the homoge-
neous terms of one and the same order, we obtain

%gl(u. t)=Ag\(u, t) , &lu, 0)=0

& golu, = Aga(u, 0+2GAgi(w, ) . gz 0)=0

2 glu, O)=Agyu, O+6Gyg(w )+32%| L gw 1), gfu 0)=0,
dt du 2 (a,f)

where A is the linear part on the right hand-side of (3.8) while G, and G are the
nonlinear parts of order two and three, respectively. As G,=0 we obtain:

&(u, t)=(exp(tA)u, gyu, £) = (exp (tA))gyu, 0)=0,
2o, )=6 J’ exp ((—1)A) . Gyexp (¢A)a)dx.

The above can be grounded by the Cauchy’s theorem for existence and uniqueness of
solution of equation (2.3) which is proved in the Appendix.

Further down we shall assume that Assumption 2.and Assumption 3. are satisfied.
For the sake of brevity and without loss of generality we shall assume t,30 for £=0,
+1,..., +N, so that the dimension of the torus 7T, will be 2N+ 1, In Fourier co-ordi-
nates the operator N, has a form:

(Net)y=g\(1, £),+gs(ut, 1)o/6+ B, O g\(1, E)=exp(tL,).u,
gt D,=6 [0 T (u,|upP. 0. | P et (a0,

o N e‘llRe).k_l
=6u.e " . ol (We'ﬁ' c O uy )+ Wu, t),,

t o 9
where v(z, t)=6 ofe"—"". W uyde, Li'u— (3)
’—H_’)(uq —a RICH —IT_J)

~ (u N -
and v(u),= I (-2 — — g:_q,, + 9 8¢9, ‘f:,q.:)'
P.q.s

Where the symbol I,,, means summation with respect to all integers p, ¢, s, such
that p+¢+s=n and at least two of the integers |p|, |¢| or |s| are greater than N.
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Then
4.1 n, N 24Rehy n 2/9R
(4.1) (Nar),=uqe (1 +‘:}i~(8 —1).®7. | 1, |2/2Re M) W), + B(u),
. N 2f Re A
=u,e” fm l".(l teRetn 14 I efReM. 'e,—Ri - @7 |1y )+ v(w), + B(u),
k=N = el’g

. N
—ue” "™ (1 +tRe,. p.,,(8)+tk zN HA8). @2 ax )+ V()y+ B(1),

Here p,(8)=(e’ " *—1)/(¢ Re A,)=1+0O(3)
pa)=e' " (e R M_1)(2¢ Re X)) = (1 + O(B)X1 + O(8))= 1+ O(3).

Note that p,(8), ni(d)€R.

Further we shall calculate |(Nu),| and arg(Nu), for |u|<N. That will help us
to use better Assumption 3. (which we assume to be fulfilled). The idea of the next
calculation is this: if the complex number a+ bi, where b<a is given, then |a|~|a+bi|
and b~arg(a+bi). Of course the symbol *~" will be defined.

For n=0, +1,..., + N we find

N, B )4V, (@) _jo _itim
(Ni)y | =ppe| 1+t (O Redy ot T BRI [y ! =2 e |
k=N

B (u)+v (1) ¢ 0nit ImApysg

N ~
=p((1+¢p,(8)Re }""H» ZNpZ (8) Re ®%. | u,|? + Re( 5

B,(u):V,,(ﬂ) e it 1m Ay yg)1/2
= Pa((1 4 Cy(0))* + (Ga(@))'.

By the last equality we defined implicitly the functionals §,(#) and (y(«). Taking into
consideration that when u¢B; (1) and {J(x) are “small” with respect to the number
one, we obtain

(Npt), | = pal 1+ Cy() + ((§1(2))* + (Ca(1))*)/2) + Pl :z; (2i(=) +(C1(@)* + (Co(@)*).ay) ax€R.

N
-{—(ch_v e (8). Im @y . | a, |+ Im(

Denote v,(1) = p(((G,(2) + (So())?)/2 + 52 (28,(=) + (Gi(@))* + (Ca(12))?)* ay).
Then we obtain
(5.2) [ (Nt2), | = p 1+ Cy(@)) +7,(8))

Consider the just defined functional Y, We find consequently :

N L N~ n
T Ji(B)Re®i.|u,P— I pi(3)Re®i.|9,[?|
N Aa<N

k=

2‘}'2” | @7 | (| x| — 18a])- (1 al+|8a syl @—8[[(ff e[|+ 3 D

[l oo ta=pIexp (D, 9,3 exp ).
“ it Im 9 - """ n
| Re (e g~ -itt *ﬂ)—Re(”_;i,—’.e Wit mhy | 5. || u—9]|. Indeed B (u)=O(8%)
n

n
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pipt=0(3), | B..(fl)—ﬁn(9) |=|lu—38].0(),

lpu—pd < u—3 |, |e® —e®n|<|lu—9].5. 512

By analogy

- —l m s —f —l m

Re ("u) 0% it 1 x,,) Re (V() i09—it | l")ISC;o.ﬁm-Hu—SH-
’l n
Thus we obtain
(5.3) [ Co()—C(8) (=182, [ u—8 .
In a way analogical to that one proves
(5.4) | Co()—Lo(8) | = 1. 8'2. || u—8 ||.
Now with the help of (5.3) and (5.4) we conclude
(5.5) | Yu@)—Tn(®) [=C15. 8. || 2—9 .
Further i arg (Nju),=10g - A~
urther iarg (Nu),=log N, |
i arg (Njut),— 10, — it Im &, = log — Fo@+&ale) _

14+8y(u )+ valu) /02

=log (1 + (i%a (&) —¥4(@)/pm)/(1 + Ly(2) + ¥4 (1)/PR))
= (1) — Yn(@)/p2)/(1 4 Ca(@) + Y (2)/P) + (@) =Y (@) [PRI(1 + () +7, (w)/p7) ) +
For the Taylor’s series expansion to be correct we naturally used
iCalt1)—Y nlu2) 02
at | 14Gy() —Yalw) P,
Let fa(u)=(iCs(tz) —¥,()/p)/(1+ 53 (8)+ 7, (@)/pn)- Then fo(u)=0(3) for ue Bs
| fo(e) —f5(9) | = | (o) +¥n (@)/pa+ &x@)5r(9) + ilo(1) .Y, (3)/pr
—1(1)51(8)/pti— Lo 9Ny () + §, () - Ya(3)/Pn — Ea(O)Yal(t) P+ () Va(2)/(P - PR)/I(1 + Gy ()
+7,(@)/pmX1 +51(3) +u9)/PN |5 Cra - (| Galt)—Ea®) |+ | ¥al) P~ Tu(8)/Pr | + [Ca (1) - £i(9)
— Cy(1) . Ca(9) | + | La) Yol 9)/Pa—La(9) Yol 1) pr |+ | Yalt)5a(8)/Pr—T,(8) . Lu(@)/pn |)-
Estimate the addends | o(2) . §4(8)—&i(&) . §a(9) | =] Ga(u)(Ga(9)—Li(@)) |+ | Cy(u)(Ga(9) —Cx(®) |
< 05092 || — 81 (we used (5.4))]7,().5i(9)/pr — Y(8)or(w)/pn| = | (Va®) - Ly(8)- pa
—Yu(9). Gy(@) . p)/Pi- P | =] (T (@)=Y a(9))54(9) - P+ Ya(ONEA(8)—L,(10)).- P+ Tu(9) - La()(p

—pm)|/|pa.pn|<cis.892.| u—9|. An analogical estimate holds for the last addend.
Ultnnately we obtain | fo(u)—fs(9)|=c)7. || u—9]. 8%

Denote ()= {s(u) ily(u). As in the above inequalities we obtain: |T,(u)—5(9)]
S0gflu—9].8

|<1 for sufficiently small 8.
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Now we can write down: — 0, — it. ImA, + iarg (Nu), = L2, (fo())* = ile(u)+ (1)
+Z2 fs(u))‘=i§,(u)+if,.(u), where we have denoted i.C(#)=C,(x) + I, (fo()h
Then we obtain
(56) | )= Cu(9) [<cyo || a—B1|. 8.

Denote p?(u)=Re (v (u).exp(—iBi—it. Imd,)), pi(u)=Im(v,(a).(exp(—i0:—it

Im%,))/p2).
Generalize the obtained results: The shift operator along the trajectories of equa-
tion (3.8) — N, maps a point u=2X,¢ z u,e**¢Bs in this way:
For |m|<N, where u, =p,,.exp (i6,)

.-/

PP (1 + G0+ 700) = 1+ p(®) R Dt T FF(E). Re OF |1 )+ 420)+ 1 (0)

=—N
O 1 kL) + ) = Op £ WDyt T FHE). T OF. 142+ 0) + (),
where 7v,(u) =7,,,(u)+ Re (B,,(1) .exp (—i0,,—it Im A,,))
En(t) = L) + 1 (Bu(4)€XP (— By — it Im 1)) p2)
and as it is easy to calculate by the help of (5.5), (5.6)
(5.7 | Y m( )= Ym(8) | SCop" [| 2= 892, | E(1) —Em(8) |SCan [ 2—3 |8,
For | n|>N we have

N 'Zt Re x,,_l n
Uy—ll,-eXp(E1,). (14 ._2 . ZRen, OF - | 1y |?)+ V(1) + B ().

Up to the end of 5. we shall give some definitions and prove a lemma concer-
ning the operator N,. Define the spaces:
Wy={ueWic:u,=0, |[n|>N}, W, ={ue¢Wic:u,=0, [n|<N}

W+={u¢ Wic: Imu,=0, Reu,=0, n¢Z}

W4 =W+N Wy and denote by P,, P, the natural projectors, corresponding to the de-
composition of Wi in a direct sum Wyc=WyDOW,.
Py: Wic—W,, P;: Wic—W,.
Define also P} : u—(|uyl, |@sr]s..., |@sn], 0, 0,...)
P: u—Phu+Piu=(tyl, |tsr] ... ltznl deen,...)

Consider the operator N: WA X W, —WH X W, defined like this:

N o
p,,.—op,.(l-{»-t.u,,(&).Rek_-}-t‘ ZNuT(S).Rewz'.pi |m| =N

_ N exp(2tReh,)—1 .
N: u,~u,.(exp (£A,).(1 + E_N ——2—,&7:——-0;- p2) |n|>N.
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If Assumption 2. is satisfied, then the system
N o o
(p,,(ﬁ).REI.,,,-f-k ZN ui(3).Re @ .p)).p,=0. m=0, +1,..., +N

has a positive solution p=(po, P+, P12,-+-» Paa) P;=0, |{|<N. Really the distance
between the stationary solution p of the operator AV and the stationary solution t of
equation (3.9) is O(8%?), because p(8) - Re A= Re A,+O(8%), 4 (8) =1 + O(3) and then p; —17
= 0(8?) hence p,—1,=0(8%%). For us will be more conviniently to operate with the
stationary point p of the operator N than with the stationary solution t. As we noted
Pr— T =0@) for k=0, =1,..., £N and then p will satisfy Assumption 3.
In the above reasonings we used that 1,=0(/8) for k=0, +1,..., +N. It is easy
to achieve that, replacing in Assumption 2.t,=1_,. Since Re},=0(3) and det (Re ®7)¥:N |
+0 we obtain t,=O(y d).

Denote W?={u¢ Wic: Imu,=0, neZ}, W3=W*n W,.

Lemma 5.1. Let hold Assumption 2. and Assumption 3. Then there exists a

constant ¢>0, such that for the Frechet derivative of the operator N in the point p
is fulfilled _

dN,,
Il 76|<1—c8

for any 8¢ (0, 8,), where 8. depends only on c.
Proof. We have %: W,W, - W3DW,. Let u=Z,¢zu,exp(inx)¢ W,OW,.
For |n|<N holds .

—_ N -~
N(p+u)p= (Pt ) (1 +1AE)ReX+2 T ui(8).Re Bi.(pyt24)?)

N N
=uy(1+tn(S)Red, +t I i(d).Re 02.92)+2p,,* T A0). Re @ pysy + ...

For |m|>N holds
_ 4 N ARedp
Np +t)p=1p.e"m.(1+ Z —IReR, cDr.pr) +. ..,

k=—N

where the dots mean Eonlinear addends with respect to «#. Taking into consideration
that p,(5) = 14+ 0(3), px(d) =1+0(3), pr=Ta+0(8%), we find that the eigenvalues of
the matrix (o), 4, j=0, +1,..., =N

@y=2p,p;-PAS)-Re @)t i)

-~ 2 ~i N ~
@, = tp8) . Re b+ 2fp; . ni(8) . Re o§+t'_z_ . ps Re @} . ni(8)

(which are eigenvalues of the operator %—I) satisfy condition i) of Assumption 3.

Moreover, as the limits lim a,/8 exist, then the distance between the eigenvalues of
(ay) and the origine of C is O(8). Hence the first 2N+ 1 eigenvalues of the operator

dN
dp Which are obtained when we consider the restriction of the above operator on the
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invariant space. W%, liein a circle witharadius 1— ¢y for some constant cgy > 0. It
remains to calculate the rest eigenvalues:

N Redy |

efRedn(l+ X
h

Nw.REQZ.pZ):l-{-tRCX,,
- k

N
#t T (14246) - Re ® . pj+O(Re &, ).

But A, =ad/2 — 8n? + \a?3?/4—ad’n? — §°n* — 1 — n? and consequently exp(fRe),)
=exp (afd/2). Now we shall make sure that condition ii) of Assumption 3. remains valid
for the numbers
N 2f Re A,

et ®2.p2), |n|>N. Really

k——xN 2Rel .

X(5) def exp(£Re},).exp(2¢Rer,) — 1)/2Re X,

=
A, =en. (1+

1+x

0,8 ~
=exp (¢ ReX,)(1+0(2f Re hy))<sexp (afd/2X1 +O(2¢ Re 1,)) =1 + O,(3), lim —’é(—) =0+ 0.

As the index £ takes here a finite number of values then condition ii) of Assumption 3.
is fulfilled and hence for all sufficiently small numbers >0 and a suitable constant
Cas, the real part of the number X,= efRe*a(1+ . _y (” R""'—l).@:.pZ/Q Re ), |n|>N
lies in the interval [—1+ ¢,38, 1—cy38]. Now we shall prove that for a suitable constant
ca¢>0 holds |[Im A, |<cy, .5. Indeed

e')t Re 1"—1

- N
[ImA,|=] Z

N
I, ToRer, Am @7 . pl.efReta| =| ‘EN H1+%%8)). Im®7.p2)| < )8

(we used that the numbers |®7| are limited). Possibly decreasing the constant ¢>0°
we conclude that the numbers I,, lie in a circle with a radius 1—¢3 and centrum —

~ = dN ~
the origine in C. To the A, corresponds an eigenvalue A, of the operator Elpi and |A,

= li!. In this way we conclude that for all sufficiently small numbers >0 the eigen-

values of the operator %’—Z— lies in a circle with a radius 1—c§ and hence ”%‘Kl—c&

6. Asymptotic stable invariant tori. Let Bs is a3 d-neighbourhood of the torus
To={u¢ Wic: |u,|=pp |n|=<N; u,=0, |n|>N}. The last set was invariant for the
operator N. Define the projection n: Bs—T,, mu=ZIY , p,.exp(ikx + iargu,). The
triple (Bs, T, m) is local trivial bundle with base 7', projection m and fibred space Bs
(for suitable 8 and neighbourhood Bs).

Proof of Theorem 4.2.

Where it is necessary we shall identify the elements (z,, w1, ..., uyn 0, 0,...)€7T,
and (argu,, arguyy, .., arguyy)€Rony1/27Z2N+1 of the 2N+ l-dimensional torus T,
and the standard 2N+ 1-dimensional torus obtained by factorization of Rayyi with re-
spect to the lattice 2rZ?V+!, In this way already is defined the sum 0+ ¢ ¢ 7, for arbi-
trary elements of 7,—0,p. Denote by o the set of sections of the bundle (Bs, T,, x)
satisfying the Lipschitz’s condition with exponent &2 in the following sence: for any
¢o€w and 0,, 0,¢ 7, holds the estimate

[| Po(0,)— Po(0,) ”\Vl,cs 871,16, —8, ”‘2N+l'
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The operator P was defined in 5. In the set ® we shall define the metric

p(e, V)= e s 12 ©)—w(®)ly, .

which turn it into a complete metric space. The invariant torus of the operator N, we
shall search as a section of the set . Define the operator L: o—w mapping a section
9€o into a section Lo which graphics coincides with the set {NV,o(u): u¢ T,}.

It is clear if some ¢ ¢ is a stationary point of the operator L, then its graphics
will be the invariant torus in question. Now our aim shall be to prove that the mapping
L is contraction (which is naturally because of the asymptotic stability). That will be
done by three stages.

6.1. Here will be obtained some auxiliary estimates. Define the three-linear symme-
trical functionals ¢,: WicX Wi,cX Wi,c—C regarding that ¢, (z, 9, 2) for u=9=2z is
equal to

N ~
t ¥ Wi(8).Re®i.|uyf.up [n|SN
—N

Palt, 4, 4)= ¥y Ry, P)
tk):—Ne n'-2t_Re—Xk_'®k'|u*| .u,., ‘”|>N.

A’ ~
Denote G,(u, 8)=t T pi(3).Im®k.|u,|.|9,]
k N

=]

o(u, 9, 2)= z:z 0q(u, 9, 2).exp(inx)

(@)= (vo(@), Y11(@), - - - Yan(@), Brvinf@),...)
“p(u)=(p‘o’(u)’ ppi)(u)l vy P;N(U), V;t(N+l)(u). cee )

As it was noted at the beginning of 5, ||B(&) —B(9)|| = cg|lu— 9| .(|[u|®+|8]P)
and from (5.7) we find || n(z) — n(9)||Scesd®?.||u — 8], || n(@)||=ceed?; u, 9€Bs. Let
u¢Bs, y=Pu, 0=nu. The shift operator along the trajectories of equation (2.8) maps
a point u¢ Bs thus:

y—PeRy 0y, ¥, ¥)+uo(w)+ ()
(6.1) 0,—0,+¢ImA,+Gylu, u)+p)u)+8E,@), |n|sN

I n(@)—n(9) || casd®. | 1= [l [En)—EL)|SCuid. || u—9 .

Denote pe=(pyexp (i0,), ps1exp(i8i1),..., panexp(®.n), 0. 0,...).
Lemmaoﬁ.l. Fg)r arbitrary points u, 8¢ Wic holds ||u— 9| < | u
+|| Pu—P3 ||
Proof. Let 0=nu, ¢=n9 and

Uo=(|uy|.exp (i9o), |us1|exp (@), ..., |@en|€XP(EQin) Usvity ... )

Then || u—8 | || u—ue | +|| ue—9||<| u||. || exp (#)—exp (ig) ||+ || Pu— P83 . But | exp (i8,)
—exp(i,)|=|0,—@, | then |[u—8||s||ul|.|[0—0|+|| Pa—P3 ||
Corollary. For any two elements 6, @ €Rayyy holds ||pg—pe| = |/p| .|| 60—l
Let « and 9 are such that p+u, p+9¢€ Bs. Denote 0 =nu, ¢=n9. Then p,+u¢n—'0,

Po+9¢n1¢. In order to prove that L is contraction in the complete metric space o,
we are to estimate the term PNp,+u)—PN/pe+9). From (6.1) we obtain

0—ol
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(6:2) PN(py+u)—PNfpo+9)=Pe'¥(p+ Pu—p—P3)+¢(p+ Pu, p+Pu,
p+Pu)—o(p+PY, p+PY, p+PY)+n(py+u)—N(pe+9)+n’(u+ pg)—n(pe+9).

Using the symbols of (6.1), we have N: y—*Pe‘:"y-l;-(p(y, ¥, ¥). Then %y=Pe'fy
+3¢(p, p, y). In this way from (6.2) after calculations we optain the equivalent:

(6.3) PNip,+u)—PN{po+9)= %’g(Pu—PS)Hcp(p. Pu+ P9, Pu—P9) +o(Pu, Pu, Pu

—P8)+o(Pu, P8, Pu—P3)+¢(P3, P, Pu—P8)+n(py+u)—n(pe+9)
+ 1P +py) — 1 (pe+9)-

Remains to estimate the terms n(p,+4)—n(pe+9) and p°(p, +u)—n(pe+3). Using (6.1
and Lemma 6.1., we find

(6:4) [ (py1)—N(Po+9) S exd . | py +u—po—9 | < casd™™(|| Py —po|+ ] u—91)
<|| Pu—P8|| 382+ ([ p || [| 0= |+l [l [| 0—@])-

On the other hand, taking into consideration the definition of p?(u) and v,(u) (for

|n|<N) we find

(6.5) | 0o+ pg)—HP(8+ po) || = a7 o [| 4+ po—8—po | . 82 (| |+| 8 ]])
<. (||| 0=+ ||| 0—0||+] Pu—P).

By analogy with this one proves

(6.6) | u8@+ po) —nY(9+po) | caed . (|| 0—0 || . (I p [l + 1] @ [N+ Pu—P3 )

(which will be used further). In this way we obtain the estimate

6.7) || PN{(po+1)—PN{po+9)| | 11 || Pu—PS |
+3@-llpll.| Pu+PS .| Pu—PS|+|@|-||Pulp.| Pu—PY|
@1l Pull.|| P8|l.|| Pu—P8 [+ @ [| P} || Pa—PS | +cs*. (| p .| 0—9]|
@] 0—0 |+ Pu—PS ) S(1—5-8). || Pu— P3| +cyud?. | 0—@ [pans1.

Here we used again | p||=0(8"); | |, || 8]=0@) | @|/<ce.
Now we shall estimate from below the quantity || xN/p,+u)—=N,(pe+9)|. From

(6.1) we obtain N/(p,+u),=0,+2ImA,+Gupy+u, pg+u)+pup(py+u)+E(po+u). Using
that G,(p,+u, p,+u)=G,p+ Pu, p+ Pu), we reach to the identity

NPy + 1)y —ENLPo+ 3)p=0,— @,
Now with the help of (6.1), (6.6) and Lemma 6.1. we can write down:
| ENL Py +1)s — TNLPo+9)a| = |0y — @p| — €208 .|| Pu—PY|| —c3,8 .|| py+u—pe—3||
=] 04— @n|—Cag- 8. | Pu—PY || —cnd(|| p || .11 0—0 ||+ |2 ||.|| 0—@ ||+ || Pu—PS]|)
=|0,—@,| =87 ||[Pu—P8||—cyd. || 0—0].
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Then
(68) || *N{py+u)—wNLpo+9) [lw, . Z(1—28"). || 0—0 [lpans1—c8". | Pu—PY ||y, .

6.2. Now we shall check that the operator L is correctly defined upon the metric

space o, i. e. for any y¢€ o holds Ly¢o.
Denote S=Ryy.1/2rZ?N+1. Let the section y¢w is fixed. Consider the operator
N,y : §—S§ defined in (6.1) thus

Ny 2 0—n(N,y(0)).

It is obvious the operator is continuous. From inequality (6.8) we see that it is inver-
sible and the inverse operator is also continuous. In other words, nNV,y is homeomor-
phism between S and S. But S is both open and closed topological space and conse-
quently the set nNV,y(S)—S is such a space. It proves that aN,y(S)=S. According to
the above, for arbitrary ¢, 0,¢S there exist points o,0¢S, such that nN(v(9))
=(Plr7INt(W(9))=el’ i e

(LvX@1)=N[w(9). (Ly)X8)=N/(v(6)).
Let us check if Ly satisfies the Lipschitz’s condition.
| P((LyX@)—PULy)O)) ||/l 01—6y ||
= || PNAw(9))— PNAw(8))/|| *N{(¥())— =N w(8)) ||
= || PN{pe+8)—PN{py+u) ||/ *N{pe+8)—aN(pg +u) ||,

where n8=¢, nu=0, y(0)=p,+u, ¥(¢)=po+3.
As y¢o using inequalities (6.7) and (6.8), we obtain

|| P(Ly X)) —P(LyX8,) I/l 01 —0, |
=((1—59) || Pu—P3 ||+ 8 || 0—0|)/(1 —2d*?. | 0—0 || —c0n8'2. || Pu—PB )
=((1—-58).|| Pu—P3 [|0—0 || +c28?)/(1 — 38 —3,8'2. || Pu—P8 ||/|| 8—e|).

As py+u=y(0), pot+3=y(e) then

| Pw®)—Pwi@) || _ [| Pu=P3 || _ 5o
Io—ell lHe—ell

and ultimately
1| L)) — PLYXOI/ 01— 0y[| S (1 =5 )3 + cqqd?)/(1—e3y8* — 3,82 825)
< 823(1—08/2 + €8 P) (1 —3g0¥2—4,87°) < §2°

for sufficiently small 5. The only thing we have not proved is that (Ly)0)¢Bs for
any 0¢S. In the next item 6.3. we shall see that L is contraction mapping. If the
neighbourhood B; has a form Bs = {u¢ Wic: dist (u,T,)<c.8}, it will be enough to
assert that (Ly)©) for any 0 belongs to Bs and consequently Ly ¢o.

6.3. Here we shall prove that L is contraction mapping. By analogy with (6.8) may

be proved the inequality
(6.9) || *N(py + 1) — NP+ 9) || (1 +¢8%?) .|| 0—@ || +5,8'7. || Pu—P3 ||, 7u=6, n8=¢
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Let y,, yo€0 and 0¢S is an arbitrary point. We denote 8;=mN,y(0), 0y =nN,yy(0).
Then from (6.9) we obtain

(6.10) | 7N (w1(9)) — =N (w4(0)) || = [18; =8, [| <3182 || Pyy(8)—Pyy(8) L.

Using Lemma 6.1, we have [[(Ly,)(0,)—(Lw2)(8,) | < || P(Lwi)(0,)—P(Ly)0,) ||+ || P(Lya)(0y)
— P(Lya)8)) | = || PNwi(0) — PNpwa(0) || + || P(Lwy) (8;) — P(Lva) (0,) | (we use (6.7))

< (1—-5-8) | Pyy(0)— Pyy(0) | +8%°.1/6,—0, |
(we use 6.10)
(1= 58). 1 v1(0)—vy0) | +c3y87" . | wi(O)—va(0) || (1 — 5 ) P, a).

Now we can observe that the operator n/V,y, as we saw at the beginning of item 6.2.is
surjection and consequently the following inequality holds p(Lvy, Lys)=(1—¢8/3) . p(y,, ¥a),
i. e. the operator L is contraction mapping.

We denote by { the zero section of the bundle (B85, 7,, m). Let us estimate the
distance between { and L. Using (6.1) and (6.5), we obtain:

p(S LO)= 2np [| (LEX®N,pg) —E(mNipy) ||
[
— sup || Pe!Tp+o(p, p. p)+1(py)+1(P)—pl| =iy [l n(pe) 1| = €258%2 . py || < €350%.
P

For an arbitrary section y¢® we obtain:
pC Ly)=p(LE, Lw)+p(G LOS(—F).p(C, W)+ 5. 8°

g(l_%)-fos‘*‘cslis’ = Coa(l —_c"f—+-§fi 8)‘

Now possibly increasing the radius of Bs, i. e. the constant ¢, we obtain p(, L{)=<c,9.

We shall note that it was possible, because the constant ¢y does not depends
upon the constant ¢, So we saw that L is correctly defined and is contraction map-
ping. Hence L has in o unique stationary point n and Ln=mn. The graphics I's={n(6):
0¢T,} of the section n is an invariant manifold of the shift operator along the trajec-
tories of equation (3.8) — N,. As L is contraction mapping, then n possesses the fea-
ture asymptotic stability. The projection n is a homeomorphism between I's and T,.
Thereby Theorem 4.2. in the case, when the torus determined by Assumption 2. is an
odd dimensional is proved. The even-dimensional case, however, is considered by ana-
logy. Suffice it to assume for example t,=0.

In order to prove Theorem 4.1. we have to show at least one pair of nonlineari-
ties g¢#, fe # for which Assumption 2. and Assumption 3. are satisfied (see the for-
mulation of Theorem 4.2.).

Example. Let us note that for §=0

Re®; =3 Refr, + o Imgr, ,/(NTFm.(1+4), ktn

3 3
Re ®" = - Refr, . +5 Imgr, _/(14n%)%2

(see the definition of ®7). Moreover, for |&|<N,|Ay(8) —A(0)|=cs.d, for some con-

stant ¢y A simple example of nonlinearities f and g satisfying the conditions of
Theorem 4.2. are
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3 2r
fly=w—=" [ wdx; gesf, Im 0.

nk—k

For example g(u)=sinu—u. Really (8%),=X,,5:5-19,9,9,

33 2x o )
(= [ 9dx),=06u,. X |u,)?
0 k=0
and consequently the coefficients f7 aue equal to zero for k=-n and f;:,k,—~l: =1 for
k-=n. The system of linear equations from Assumption 2. in this case is diagonal and
has a form

(ad/2—8n?—31%/8) .1,=0, n=0, +1,..., =N

If @/2—N2>0, then the above system has a positive solution (tj, T11,..., T.n), Wwhere

ri=\}—§—(a8"2—8.n7). The corresponding matrix (a;;) from Assumption 3. is diagonal
and has eigenvalues {—ad+28n%: n=0, +1,..., ©=N}. They are negative because
a—2N2>0. The inequalities from condition ii) of Assumption 3. are satisfied if a —2(NV+-1)?
<0. Thus we conclude that if a€(2N2, 2(N+1)3%), then the Fourier coefficients satisfy
Assumption 2. and Assumption 3, i. e. according to Theorem 4.2. equation (3.8) has an
invariant asymptotic stable 2N+ l-dimensional torus. An arbitrary even-dimensional
torus can be obtained if we replace the above function f by the function

3," P2 3a 2 2n . 2r . N
f(u,):u?—TJ ufdx—(;_‘g,g u,dx.((uf u, cosxdx) +(Oj u, sinxdx)?).

If ae(2NV2, 2(N+1)?), then equation (3.8) possess 2N-dimensional invariant asymptotic
stable torus (the system linear equations from Assumption 2. has a solution 7,=0,
T, >0, i=+1,..., +N).

If equation (3.8) possesses an invariant asymptotic stable torus, then the same
is true for equation (23). Really if Is is the torus of equation (3.8), then
[s=L, o H(Ts)= Wi is an invariant asymptotic stable torus of equation (2.3). As all
inequalities in Assumption 3. are uniformly strict then there exists a neighbour-
hood D,=.#, of the point (gs f) and an interval A,=R, such that for arbitrary nonli-
nearities (gs, f)¢ D, and constant a¢A, equation (2.3) possesses an invariant asympto-
tic stable torus with the same dimension. Thus the proof of Theorem 4.1.is completed.

7. Appendix. Let us consider the ordinary differential equation
d
(7.1) < W)= Lu(t)+ (u(t)

in the Banach space W), where ®: W;c— Wi is nonlinear continuously differentiable
operator and L is linear unbounded operator with everywhere dense domain of definition
D, = Ws3c~Wic. L is defined with the help of the equalities L exp (inx)=»x,exp (inx),
where A,=ad/2—0n2+ (0?3%3/4 — ad?n? — &°n' —1—n?)'2

Proposition 7.1. There exist constants 7>0 and 7>0 so that if uoeswlc((), r),

then there is continuously differentiable with respect to £ function u(£), which takes
values in SW: c(O. 2r) and satisfies equation (7.1) on the interval [0, 7|5 ¢

Proof. We denote Woc=Lacl0, 2n). Let us define the operator B: Wic —~ Woc in
this way B(u)=u,+Znczn.u,.e", where u==X, zu,e™. The operators B: Wic— Woc
and B—1: Wyc— Wi are continuous and || B||=1, {{B~'/|=2. The operator ®oB-':

4 Cn. Cepamka, xu. 1
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Wo,c—Wi,c is continuously differentiable. In conjunction with (7.1) let us consider the
equivalent integral equation

t
(7.2) u(t)y=et . u(0)+ [ eIt d(u(r))dr
0
and also the equation
(7.3) y(t)=Bett.B-1 .y(0) + jBe"—"L 0.8 y(v) dr.

The vector function w(f)=B—'y(f) is solution of (7.2) if and only if y(f) is solution
of (7.3).

Let us define the metric space Q, consisting of vector functions y(f) of the time
t¢[0, T), taking values in the space Woc and satisfying the conditions :

i) ¥(0)=y, where yoeSWoc(O, r) is a fixed initial condition.

il) Y(£)€ Sy, (0, 2r) for t€[0, T
With the metric p(yy.ya)=5ups ¢ (0,7 | Yi()—Yolt)[ly, . the set Q turns into a com-

plete metric space.
We shall prove that the operator G: Q—Q defined thus

t
G: y(t)—Be'*B-1y,+B [ et~ ®oB-y(t)d
0

is contraction mapping.
On the half-axis 7>0 there exists a function K(r)>0, K(r)=0(r), r—0, such that

for arbitrary y;, ¥,€Sy, (0, 7) is fulfilled
[|[®oB 'y, —®.B7'y,| WLCSK(’) JIYri—Ya ”Wo_c'

We obtain consequtively

(G ) —(GysX )| = ne™ uf’ e~ (@ 0 B71yy(1)a—(® o B~'yo(1))p)dx |

t
<[] [ e K@) | 31 — ya(@) | de = p (s 32)-K ()] — """/ [Red,|.

We denote o,—|1—exp(¢Rer,)|/|Rekr,|. In order to estimate the quantity [l (Gy Xb)
—(Gy,)(t)l*w,oc we have to estimate first the power series S=(Z,¢zc?)"%

The obvious estimate |o,|<cg/8(1+n2) and S=ca (Zn¢z(1+n%2)1%5 is not suitable
for our purposes. In this way we prove the local solvability of equation (7.1) only in a
domain with a radius r=r(8)=0(5) while as we know the distance between the inva-

riant manifold from Theorem 4.1.and the origine is O(y 8). Such a minor gap is done
in [9]. In our case the above difficulty can be got over in the following way:

Let us fix the parameter 8>0. If [n| =877, then holds |o,|=2/| Re A, |=c3/8(1 4 n?)
< Cy/(1+|n|). If |m|<8", then holds |o, < texp(t Rek,(d,)), where 0<8,<5 and conse-
quently S=(cagt?/8+ c)' % 1 1587 we obtain ultimately S=c,,, where c,, is a constant
which does not depend upon the paramcter 8. Possibly decreasing the constant r>0, we
obtain K(r).S < 1/2 and consequently p(Gyy, Gys) = (Y1, ¥2)/2, 1. €. Gis contraction mapping.
Hence it follows that G has in Q a unique stationary point y(£), £€(0, T] which is
simultaneously a solution of (7.3) with an initial condition ¥(0)= y,. Taking into consi-
deration that ||u|,, _=| By |\23Iy|lw,°c-.«‘2| Ully, o we conclude that u=B-'y is
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solution of (7.1), which satisfies the conditions of the Proposition. We shall note once
again, that 7= 0(8'?) but r does not depend on &.

After combining the above Proposition with Theorem 9.6. and Theorem 9.7 from
[3], one can prove that the operator u(f)=u(t, u(0)) for fixed ¢ is differentiable with
respect to #(0) (and it was used in the paper).

The author is obliged to E. Horozov for the all-round help and also to I. lliev for
the valuable criticism.
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