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A DIFFERENCE METHOD FOR WEAK SOLUTIONS
OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
OF THE FIRST ORDER WITH A RETARDED ARGUMENT

STANISLAW ZACHAREK

1. Introduction. We consider here the initial problem for the first order partial
differential equation with a retarded argument.

(1) z(x, V)=f(x, ¥» 2(x, ¥), 2(a(x, ¥), B(x, ¥)), zy(x, ¥)), (x, VIEE
(2) 2(x, y)=v(x,y) for (x, y)¢€E,
where y=(y,, ..., ¥ah 2(x6 ¥)=(20(x V), ..., 2y (x, V)

and z(a(x, y), Blx, ¥)=(2(a;(x, ) Bs(xs ¥)) .. .» 2(ax(x, ¥), Bylx, ¥)))
B, M=B(x, ¥), ..., BP(x, ¥)), i=1,..., p.
The sets £ and E, are defined by
E={(x, y): 0=x<a; |y;|<b—Mx, i=1,2,...,n},
where a, 5,>0, aM,<b,, i=1, 2,..., n and
E,={(x, y): —t=x=0, |y/<b}, 1=0.
We assume that

3) (afx, ) B(x, VEE, U E, i=1,...,p, if (x ¥)EE
and a,(x, y)=x for (x, y)€E, i=1,..., p.
Definition. A continuous function u, defined on the set E,\J E is called a
weak solution of the initial problem (1), (2) if:
(i) there exists a function )¢ C((0, a), R;), Ry=(0, + o), such that the inequality

s [k y+D—=2u(x, ) +u(x, y—D]S M)

holds for each triple (x, y), (x, y+1), (x, y—!) belonging to E, x+0, [40;

(ii) there exists a constant K>0 such that ||u,(x, y)|<K almost ewerywhere on E
(we denote by || - | the norm in R");

(iii) u satisfies on E the Lipschitz condition with respect to (x, y);

(iv) u satisfies almost ewerywhere on E the differential equation with a retarded
argument (1) and initial condition (2) for (x, y)€ E,.

Suppose that there exists a weak solution u of (1). In this paper we give suffi-
cient conditions for the convergence of the sequence (™), where v(™ are solution of
a difference equation corresponding to (1), to the weak solution u of (1).

A difference scheme for the classicall solutions of first order partial differential
equations and partial differential-functional equations was considered in (1] and [2]. An
existence and uniqueness theory for weak solutions of (1),(2) is given in (3], [4).
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2. Notations and assumptions. For &, #2,>0, i=1,..., n we define xV=jk, j=
—n*, —n*+1,..., —1,0,1,..., n, where n*k=1, njk=a, (n,+1)k>a

Yy =jhy j=—n, —n+l..., =L 0 1...,n i=l....n
where n4;=b,. We assume that #,<kM, i=1,..., n. If my my ..., m, are integers,

then we write
m=(my, My, ..., my,), m'=(my ..., m,)

and (x(m), ym)=(xm), ym), ... ,yﬁl'",.)),
Let T={m=(m,, m'): (x), y") ¢ E}.
Co={m=(mg m'):(x™), y)) ¢ Eg}, TO={m¢T:m,=i}.
E*={(xtm), ymI):m=(my, ') €T}
Eg={(xm, y™)):m=(mqo, m’) € To}

We define functions @ie Vin=(Vin, ..., ¥ ) i=1,..., p,in the following way:

for (x, V)€ E
[ BOCe ] for Bx, y)=0

~ 1 ~

oix(x, V)= [ adx, V] v (x, ¥)=
¢ x L+ B, )] for BE(x, ¥)<O
s=l,...,n

Denote, for m¢T,
&.J(x(mn)‘ ymN =g (m); Ggf),s(x(m.\’ YN =y (m),

ym)="(m), ..., v(m)); i=1,..., p.

We have (o{m), vA(m)) €T, U T, if m¢eI and o(m, m')y=m.
We define the difference operators A, Ay, ..., A0 Ag(x, y)=%[v(x+k. ¥)

1
—v(x,9)) Aﬂ’(va’):,,_‘, [(x, y)—2(x Yio e vs Viers Vi—hy Yigv - Y i=1,..., n

and A(x, ¥)=(A(x, ¥),. .., AAx, V)
Let v be a function defined on E | E,.
We write 7™ =g(x(m), y=9)
We consider here the following difference method for the Cauchy problem (1), (2)

(4) Aofy('l)_—_f(x(ﬂo). y("l')' plelm), vim) A‘U(m)) for mer\r("\m)
olm = y(xtm), ym) for m €T,
where o™ ""'”;-(v“"(")' wim) @™+ Vp(m) ).
We introduce
Assumption H. Suppose that:
(i) the function f of the variables (x, v, 4, q), u=(uy, Uy, ..., Up), §=(q1s...,q,) is

continuous for (x, ¥) € E, u € RP*, g€ R";
(i) the derivatives f, (=0, 1,..., p) fo,(i=1,..., n) exist and they are continuous

on Ef+l+'|;
(iii) for (x, y, 4, q) € EXRPH*" we have
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O0sf, (e v, u, =L, i=0, L,....p; fo.(x, ¥, u, 9<0, i=1,..., n;
(iv) for each (x, y, u, q) € EXRPHI#"

n

,E.% fo, (% v, 1, Q)+ =05
(v) a=(ay..., a,), B=(B,...,R,) are continuous on £ and satisfy (3).
We define L — ‘_}fOL‘-, h=(hy ..., hy).
If Assumption H is satisfied, then for the weak solution u# of (1), (2) there exists
a function n of the variables (x, y, &, &), such that
() Ao, ¥)=flox, v, ulx, v), w(a(x, ), B(x, ¥)), Au(x, y))+n(x, v, k h) for (x, y)¢ E

u(x, y)=v(x, y) for (x, y)€E,.
We define S,={y € R": (x, y) € £} and ox, & B)=sup [n(x, 3, k. K)|, x €0, a)
Y X

3. The convergence of the difference method. Now we prove
Theorem. /f:

(1) Assumption H is satisfied ;

(i) hy<kM, i=1,..., n;

(iii) w is a weak solution of (1), (2);

(iv) lim f(u(x, k, h)dx=0,
k=0 0

then the difference method (4) is convergent, i. e.
lim (&' —o(m)=0.

k,h—=0

Proof. Let rim=um_zm™ for me¢T and

tH=min rm, s®=max r™, (=0, 1,..., n,
(6)
mé r() m rf

At first we prove that there exist points

(), ;7'(.))’ (,;(i)’ 47")6 RPN §=0, 1,..., p,and ¢;=(Cppse .-, €ip)s di= (dpyy ..., diy)
such that (4, ¢;)¢ T®, (i, d;) ¢ T'9 and

A B 0] (e, Y, Ry )| + a0,y 0, GO) 0

(7
» ) = n = (@0 )
£ X oy (0 a0, Gy £ =01,
and
®) b (S —SO) < In(xO, YD, Ry )|+ fu(x0, YD, GO, FO)s

p Ly~ o~ (9 id)
I PR

We prove (7). Let index i, 0=i<n,—1, be fixed. It follows from (6) that there exist
b;=(by, ..., by and ¢, =(c;, ..., c,) such that (i, b,) €T, (i+1, ¢,) € T¢+D and
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9) HO = PO = ) )b D) GtLep khe) i e
Thus, we have
. . 1, G+le) 1. )
(10) %[t(“)_n_t(”]____. Tlr i r(f,t‘) ]-{——;’[f("‘t")— r(l.b‘.)J.
In view of Assumption H and (4), (5) we obtain
p
1 i+1,c; e i\ Cs
+ [r(:+ ) ]=A0 ') _on(: <)
=f(,\‘(’), y([‘), u‘i"i)’ uwu.r,.). V(i,t‘-)), Au(i't‘))+n(x(i). y([‘_)' k. h) —f(x"), y“i), ,v(i-t‘-),
o O vihey) , Apted )
> _In(x(i)’ y(r;), k, h) | +fuo(x(i), y(c‘-)’ E(o), E(u)) (u(i'ti)—'v(i’ti))
P — _— " ) .
+ X f"i (x(:)’ y(t‘-)’ u(ﬂ, qm) (u(oi(l.t,-). v; (i) —'0"/“"1‘)‘ \vi(l.c‘.)) )
j=1
n —_— s—
j ) i\c; ic.
+ o, YU, uth, q) (A a0 — 20
I=
for some (u, gi), (@Y, g)e RP++,
Since for j=1,..., n
Aju(i‘ti) —A, 2D = _hl_[ PEE) e i1 €l G c,,,,]
i
r(z’.c,.l. SRR Fra U :ii_l' Cijgloeee-€p) > r(i‘bi)

u(i.t‘-) —'U(i' t‘.): r(,‘.ti) and r(l.ti) - r(i.b‘.)zo'

we obtain

an —; [ Féthen r(f-‘,')]g _lq(x(”, ,V(t‘)v k, h) |+ fu(x©, y(t‘) , E(O). 5‘0))#'."5)
+ E f"i (x(i), y(c‘), EU’); ;u)) r(ol(i. el e
Jj=1

+ E fa, (9, P u?, ;(/)) T|_ (P — P e S i ) )
J=1 ]
and

n — = . . _
(12) ¥ fqi(x(,-)' y(t‘-) , uw, q(j)) ;,Ll (r(l.t‘) A g S g c‘.))
J=1

: s n X — -
LD ) = (PO ) (X fox, YD, u, g L]z
Jj=1 i

The estimations (11), (12) and (10) imply (7).
In a similar way we prove (8).
In virtue of (7) we have:

(13) LD = (14 kf (X, YD, 4O, gO)] 0

+k £ful(xu')' y“ﬂ. EU)' ;(/) ) t(.l““i))—k m(x(n' y(r‘.\ Lk, h)| : l=0, Eiia, flo—l

/=1
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and
10 =0 for i~0.
nequality (13) together with the condition ¢fi, c,)<i, i=0, 1,..., n,;j=1,..., p,
.mply
zH) (O — R (xO, yeo, &y k) (14+RLY ' —k m(x™, ', &, k)| (14-kLY2
e R (XD, D R R (1 kL) —kn(xGD, y i, Ry k)|
As a result of (6) and (14) we get
um—om = —k n(x®, ye), & k)| (1+kLy™!
— ek Mxm=D, yCmeD, ko R)|(1+RL)~ kn(xmeD, yme, R, h)|
and
(15) u'm —om = — Mikn(x©@, y), k, k)| +k|n(x®, y©), k, k)|
+ ook (xmeD, yCme ko R) []> — Mlko(x©), k, k)
+ho(x, &, h)+ -+ +ko(xm kR, R)=—MI(k, k),

where M=exp(al) (14 kL)™.
In a similar way we prove

(16) u'm—aym<MIk, h).
It follows from assumption (iv) of the theorem that
(17) lim /(k, h)=0.
ki — 0

From (15), (16) and (17) we obtain

lim |[u(™ —gim | =0,
kh =0

This completes the proof.
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