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ON FOCAL LOCUS OF SUBMANIFOLDS
OF NATURALLY REDUCTIVE COMPACT
RIEMANNIAN HOMOGENEOUS SPACES

HUKUM SINGH

The purpose of this paper is to discuss focal points of submanifolds of naturally reductive com-
pact Riemannian homogeneous spaces. Focal points have been studied in detail in [l, 6, 8]. In this
paper we have estimated location of focal points along geodesic and obtained condition under which a
point is a focal point along geodesic.

1. Introduction. Let M be a C~, n-dimensional compact Riemannian manifold with
metric (,). Let L be a compact connected submanifold embedded in M. The orthogo-
nal complement N,L of the tangent space T,L in 7,M will be called the normal space
of L at p for p¢ L. The union N= 1) {N,L|p¢L} of these normal spaces which is a
subbundle of class C= of the tangent bundle 7M is called the normal bundle of the
submanifold L.

Let Y: [0, B]—=M, B€R is a normal geodesic with Y(0)=z¢L, Y(0)=v¢N,L.

Let £, ..., En1: [0, B|-TM be a parallel vector fields along Y such that (Y (1),
Ey(t), ... En._i(1)) is an orthonormal base for TyuM.

Let ¥(t), 1€[0, B] be a Jacobi field along Y. If 7.L is spanned by E(0), ..., E,0),
Y(r) is an L-Jacobifield if [1], [8]

() (Y(x), Y()=0,

(i) Y(0)€T.L,

(it)) 7Y(0)Y(0)+ oy, (O)EN,L,

where oy : 7.L—T,L is a Weingarten map.

A point Y(t,) on Y, for 7,€(0, B], is called a focal point of L with respect to Y
if there is a L-Jacobifield on Y that is not identically zero and vanishes at t=1t,. The
set of such focal points is called focal locus of L in M.

In this paper we will give estimates of the location of focal points by using the
Jacobifield of the form given in [7].

2. Naturally reductive Riemannian homogeneous spaces. Riemannian manifold
M is called homogeneous if the isometry group of (,) acts transitively on M. If Gis
a group acting transitively by isometries on M, we can write M=G//H where H is the
isotropy subgroup of G at fixed point p,. We denote the Lie algebra of G, H by g, b
M is called reductive homogeneous if there exists a complement m of § in g: g=§
m so that Ad(H) leaves m invariant. Since /7 is compact this is always the case
but notice that m is not necessarily unique. m can be identified with T,OM. The met-

ric on T,OM thus induces a metric on m again denoted by (,). M being reductive

implies [h, m]cm.
If X, Yém, then we denote by (X, Y]p [X, Y], the h and m component of

[X, Y]. If [m, m]<§, then M is symmetric.
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M is called naturally reductive if
(X, Y1 2)+<Y, [X, ZD=0,
for all X, VY, Zem,
or in other words, if [X, -] : m—m is skew symmetric for all X¢m.

We will denote the Levi-civita connection and the curvature tensor of (.) by v
and R. If M is naturally reductive, the connection 7 can be described as follows:
If X* is a Killing vector field and 'Z!ET,OM%m, then

(X, 9] if X¢b,

VeX' =) Lix ol if Xem.
The curvature tensor at p, is given by R(X, vyv=—[v, [v, X] b]_%{v, [, X Jmjm.

One knows that on a naturally reductive space there exists a connection D with
torsion 7 and curvature B so that 7 and B are D parallel.
D has the same geodesics as 7/ so that

VXY =Dy ——5-T(X, Y),

and D, 7, and B at p, can be expressed in terms of the Lie bracket:

(X, @] if X¢B,
D X* ={[X, vl if Xem

T(x, V==X, ¥,
B(X, Y)Z=—[X, Y Z],
where X, Y, Z¢m. Notice that R=B——1—T2.

Each a ¢G operates on M by left multiplication L,: G/H—G/H. The maps L, are

isometries.
The geodesics in a naturally reductive space are images of one parameter groups

in G.
Let exp, be the exponential map of G. Then for v¢m L""a”" Po is the geodesic

through p,. The derivative of Lexpstw at p, is parellel translation along L.,,,a, * Po

with respect to the connection D. Since 17 and D have the same geodesics they also
have the same Jacobi fields. But the Jacobi equation with respect to D along

Y(r):L.,pG w* Po Y(0)=v:
D% —T(Y, Dy X)+B(X, Y)Y =0,
is much simpler since 7 and B are D parallel. If we write X as X(\'):d(L.,,,,o,,,)po

(Y(7)), then the Jacobi equation reads:
Y —T(Y")+B(})=0,



78 Hukum Singh

where
T(Y)=T(@, Y)=—[v, Y],

B(})=BY, vyv——[v, [v, Y]]

This is a differential equation in the vector space m with constant coefficients,
T is skew symmetric and B is symmetric. The solutions of this equation are obtained
by substituting Y(t)=A(t) - e™, where m is a complex number and A(t) a complex
vector valued polynomial. The real and complex parts of these solutions then give a

basis of the Jacobi fields along Y.

We shall use the following theorem given by W. Ziller [7].

Theorem: /f one solves the Jacobi equation on a compact naturally reductive
Riemannian honogeneous space in the form Y(1)=A(x)- e™ with A(x) a polynomial
with D parallel complex vector fields as coefficients and a complex number, one has :

(i) m is imaginary or O;
(ii) if m is imaginary and =0, then A(7) is a constant polynomial so that the cor-

responding Jacobi fields are of the form:
Y(t)=Re Acosat—ImAsinar
Y(1)=Re Asin at+ImAcosart

with m—i-a and A(t)=A a D parallel vector field with (m*ld—mT +B)A=0;
(iii) if m=0, then A()=A;t1+ A, with A, and Ao D parallel (real) vector fields are
the only possible Jacobi fields, where B(A,)=0 and B(Ay)=T(A)).

3. Focal locus of submanifold. Our first aim is to specify the form of Jacobi
field given in the above theorem so as to give an L-Jacobifield. Since parallel vector

fields £, ..., E, with Y(t) form an orthonormal base for TyoM, Y(x) defined along
Y can be expressed as

Y(r)= jZ:l (at)cosat — B(r)sinat) E(r)

Y(1) =i=:l£l(a,(t) sinat+B(t)cosat) Efr).

Where a,(t) and B(t) are real and imaginary part of A(t) respectively, where A(t) is a

constant polynomial corresponding to (ii) of the above theorem.
Condition (i) for Y(t) to be L-Jacobifield is satisfied by the structure of Y(x). For

condition (ii)
HO)= I a(DEWQ)ETL

and therefore @pyy= ...=0p1=0, if (Ey, ..., Ep)is base for 7,L, and

k
Y(0)= I BL0) E(0)¢T.L
and therefore Brsr= - - - =P =0, if
(E,, - - -, E,) is base for T,L.
For condition (iii), we have

n—1
Y4 )Y(r): L (—a,asinat— P, acosar)E(r)
\J -l
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since £, are parallel. Therefore
n—1
VY«»Y(O)zlfl —aB,E(0)
and
k k
o. Y(0)=oyo Z o,E(0)= X a;i,E/0),
Y(0) i=1 i=1

where %, are eigen values of symmetric linear transformation oy, applied on eigen
vectors £,.
Therefore

Vo 10+ %o 0= :Ell_a BEit i.—%l ok EENL,
if
—aPB;+o;x=0 for i=1,-- - k.
Similarly for the second form of Y(;), we have

n—1 k
VioY0)+oi0Y(0)= E aaki+ X B EEN.L
if
ao;+B;A;=0 for i=1,- - -, &
So, the general form of L-Jacobi fields are of the form

k n—1
Y(r)= X B,({— cosatr—sinat)E,— I B;sinatk;
i+ N i=k+1

and
& )'i : n—1
Y(x)= .'}=:1 Bi(——, sinat+ cosa-r)E,—‘=:‘.‘+la,-sinatE,-.

For finding the location of focal point of L along Y we consider the following
suitable form of L-Jacobifield from the above structure.

Y(x)=B(5-cosat—sinax) E(x)

and
Y(t)=B(— —2— sin @ t+cos a 1)E(x).
Let Y(to) is a focal point of L along Y. Then Y(1,)=0, i. e.
B(—:- cos @ty — sinaty)=0, B(—%'— sina t,+cos a 1) =0.
Consequently

A
cotaty=- -
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in both the forms. Let 7, be the smallest positive solution of the above equation. Then

the first focal point to L along Y occurs at Y(r;). Let 1, 7y, - - -, 1, are the solu-
tions of the above equation s. t. 0<t, <1, < - - - <7,<P.
Since A,, - - -, &, are eigenvalues of the symmetric linear transformation and therefore
they define the principal curvatures of L at z, consequently

pr=1/ky - - - pe=1/Ry
will be corresponding principal radii of curvatures. Therefore & focal points will lie
along Y at distances p, - (1/a) tan at,, - - -, py=(l'a) tan ar,.

Theorem: Let M be a C» n-dimensional compact naturally reductive Rieman-
nian homogeneous space and L be a C= k-dimensional submanifold embedded in M.

Let Y: [0, B] +M be a normal geodesic with Y(0)=Z¢L, Y(0)=u¢N,L.
If
n—1
Y(t1)= I (¢ft)cosat—B(r)sinar)E;
i=1

Y(r)= ’El (ot)sinat+B(r)cosar) £
i=1

where Y, Eyx), - - - Exi(1) is an orthonormal base for TywM, are Jacobi fields
defined along Y. Then the location of k-focal points of L along Y is given by the
equation

(l/a)tanav,=p, i=1,---, k.
k focal points along Y will generate % sets of focal locus in M.

4. Special form of Jacobi fields and focal points. A vector field X is called a
Killing vector field if the operator Ax=</x is skew symmetric. This is equivalent to
saying that the one parameter group ¢, generated by X consists of isometries.

A Killing vector field X restricted to a geodesic Y is a Jacobi field, since XoY(r)

- :s ¢, Y(t) and for each s, ¢,0Y(1) is a geodesic. Jacobi fields which are restric-
s=0
tions of Killing vector fields are called isotropic Jacobi fields. An isotropic Jacobi field
Y along
Y(t)=exptv, vém satisfies [7]
0 if Xebh,
0= {x it Xem
and
[X, ] if Xeb,

v Y(0)=1{1 .
5 X V) if Xem.

Let E={W¢ T,OM;('U, W)=0} If X¢Ecm then also [X, «u]m([:‘: (X v, ©
=—(X, [v, v]m):O.

Thus the Jacobi fields coming from X¢m can be restricted to X¢ E and all Jacobi
fields with initial condition:

(MO, TYO)=(X. [5 X vl ) XEE,

are isotropic. These are already half of all Jacobi fields.
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To study Jacobi fields coming from X¢ we examine the symmetric endomorphism
B(X)=—[v, [v, X]; ]. Since B(v)=0, B maps £ into itself and let X, ; be the eigen

vectors and eigen values of B/E: B(X;)=X1X; and we set Z,=[v, X,]i €j. Then
(20 v]=llv. Xi]p v]=BX)=LX.

Therefore if 4,40, the Jacobi field X, corresponding to Z;¢j does vanish identically
since 7 Y(0)=[Z, v]=0.

Let E=E,®E, with E, the o-eigenspace of B and E, the sum of the eigenspaces
with A,#+0. Then the Jacobi fields with initial condition

(Y(0). ¥Y(0)=(0, X), X¢E,,

are isotropic Jacobi fields.

If X¢E, i. e, B(X)=0, then the D parallel vector field Y(t):d(Lc,,.Grzv),,O(X)is
a Jacobi field. The initial conditions are:

Y(0)=X¢E,,
o¥(0)=D,¥(0)— 5T (2 Y(0)=—5[v X],.

These Jacobi fields together with the two sets of isotropic Jacobi fields previously
mentioned would generate all Jacobi fields if they were linearly independent.
Now we set E,=Eg@E; with

Ey={X¢E,|[X. 7], ¢E})

and Ey=E}. Thus E=E,DEDE;
Define the subspaces V,=E®E by:

Vi={(X, 51&, o)) | XEEDE),
Va={(0, X)| X€Ey}
Va={(X. 5o, X1, | X¢€Eq).

Vi={(X, o X)) XeEs),

m

Vs={(Z, X+ -lo, X],)| XeEs BX)=T(X)=|X, v)

m) m }

It has been shown in [7] that EDE=@°_,V, and following theorem has been proved:
Theorem: EQE=@3_,V,. On a naturally reductive homogeneous space, the

Jacobi fields along Y(z) can be written as linear combination of Jacobi fields with
initial conditions in V.

Jacobi fields with initial conditions in V, can be considered in several forms. First
we consider a Jacobi field ¥(t) orthogonal to Y(t), corresponding to X, ¢ V), X,¢V;in

the form
Y(1)=a X, +B X, a, PER.
Therefore Y(0)=a X, and

Y'(0)= - a[ X(0) ], +B X0).

m

6 Con. Cepanxa, xu. |
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Thus
Y/(0)+0y, Y(0)— - alX,(0), ] +BXy(0)+2, @ X,(0),

Y (0,

where &, is eigen value of o, applied on eigen vector X;. Now %u[/\’l, v]m can be
decomposed tangential and normal to the submanifold L at Y(0)=z, therefore

Y(0)+65, Y(0) = 5Xi 2], [re+hia Xi+B Ao+ 5 (X 2l v

and right hand-side will be element of N.L if
a

B Xa(0) = — 5 [X,(0), ¥l lr,e—h @ X,(0).

Now the Jacobi field Y=o X, +PB X, is L-Jacobi field if

(1) (Y(x), Y(x))=0,

which is satisfied by the assumption that Jacobi field is always orthogonal to Y.
(2) Y(0)eT.L,

which is obvious since Y(0)=a X,(0)¢7,L.

(3) Y'(0)+ 64, Y(0)=-5-[Xi(0), ], lne €N:L,

with B Xy(0)=——5[Xi(0), ], 7,0 —n @ Xy(0).
Therefore the form of L-Jacobi field is

Y(¥)=a(l—2)Xy(t)— 5[ Xi(x), D], |7, e

If Y(z,) is a focal point along Y(t), then ¥(z,)=0 i. e, (1—M)Xl(‘to)=—;—[X1(to)‘0]mIrzl..

Thus we have
Theorem 4.1. Let M be a C> homogeneous compact naturally reductive Rie-

mannian space and L be a C= submanifold embedded in M. Let Y : [0, B|—-M be a
normal geodesic with Yoy=2¢L, Yo, =u¢N,L. If a Jacobi field Y(r) defined orthogo-
nally along Y(x) has the form Y(t)=wX(1)+P Xy(x), o BER, with initial conditions
in V(i=1, 2), then a point Y, along Y is a focal point if following condition is
satisfied :
1
(l—xl)xl (To) - 2’[)(1(1'0), vlm szL-
From the definition of V,, Vi, Vi, it is evident that if the Jacobi field ¥(x) defin-
ed along geodesic Y, corresponding to X;€Va X3€V; has the form
Y(1) = a, Xo(t) + B Xo(7)s @ BLER,
is a focal point along Y if

then a point Y-
0

(12Xt = 5[0 Koty |7 e
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Consider the Jacobi field Y(r) corresponding to X;¢V;, X;€ V5 in the form
Y(1)= 09X (7)+ BaXs3(1), ty, Po€R.
By simple calculation, one can see the form of L-Jacobi field is given by

Y (@) =3l —1) 0 XD —{ ZIX(2) 2l + Dlon XDl ) 1r,2)

where A, A3 are the eigen values of oy, corresponding to eigen vectors X, and X;

respectively.
Thus we have
Theorem (4.2). Let M be a compact naturally reductive Riemannian homoge-

neous space and L be a submanifold embedded in M. Iy the Jacobi field defined
orthogonally along normal geodesic Yy to L has the form

Y (1) = ag Xy(1) + Bo.Xs(7)
with initial conditions in V{i=13). Then a point Y .~ is a focal point along Y, if
0
" 1 " "
P M X G =5 X5 Ty + o X,

Analogous theorem can be obtained by considering the Jacobi fields in different
forms with initial conditions in V.

The author is thankful to Prof. J. Szenthe for many useful discussions during the
preparation of this paper.
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